首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effects of europium substitution on crystalline solubility, structural changes and optical properties of LiNbO3 is reported. Li1?xNb1?xEu2xO3 solid solutions exist over a very limited range of europium concentrations (x ≤ 0.01). The solid solutions were characterized by X-ray powder diffraction and density measurements. Within the range of compositions of the solid solutions, the optical properties (emission and excitation spectra) of the Eu3+ ions have been characterized. The obtained optical data indicate that two equally abundant europium luminescent species exist in the stoichiometric speciments; these correspond to the Eu3+ ions occupying the Li+ and Nb5+ sites, in agreement with the replacement mechanism which is inferred from density measurements. Other Eu3+ luminescent species which appear to be closely related with lithium deficiency were found to exist in nonstoichiometric samples, in addition to those which are present in the stoichiometric materials.  相似文献   

2.
The luminescent properties of Er3+ ions embedded in silicate glass matrices with F, N, K, Al, P, Ge, P + Al, P + K, and Ge + Al admixtures are studied. Glass samples with an erbium concentration of up to 9 × 1020 cm−3 are synthesized by plasma-assisted CVD. The spectra, kinetics, and relative quantum efficiency of Er3+ photoluminescence are estimated by exciting the samples with 514.5-nm Ar+ laser radiation. It is shown that the luminescent properties of the activator in such high-erbium unfused glasses are superior to those of the same activator in fused glasses of the same composition. This effect is attributed to suppression of clustering in the glasses prepared by low-temperature CVD, which arises because of a limited mutual solubility of the oxides in the melt. The efficient composites with an erbium concentration of up to 4 × 1020 cm−3 obtained in this work can be used as an active medium of waveguide lasers and amplifiers.  相似文献   

3.
Color-tunable luminescent materials are increasingly recognized for their potential applications in high-security anticounterfeiting and optical storage technologies. However, luminescent materials with high-contrast photoswitching behavior that change their luminescence properties in response to external stimuli are extremely scarce. In this study, a time-dependent color-tunable luminescent material, Na2BaSiO4:Eu2+ (NBSO:Eu), is introduced. This material leverages the inherent luminescence of Eu2+/Eu3+ through a light stimulus. Under 365 nm irradiation, the blue luminescence of Eu2+ gradually degraded over time, reaching a luminescence contrast of up to 88%. This degradation is accompanied by a color change of the emitted light from blue to red (Eu3+). These color changes can be reversibly tuned by alternating light or thermal stimuli. Experimental investigations revealed that the photogenerated Eu3+ ions and defects, acting as killer centers, induced multicolor luminescent switching behavior. Owing to their unique optical properties, NBSO:Eu offers exciting opportunities for designing advanced dynamic anticounterfeiting and invisible optical storage.  相似文献   

4.
An integrated photonic‐on‐a‐chip device based on a single organic‐inorganic di‐ureasil hybrid was fabricated for optical waveguide and temperature sensing. The device is composed by a thermal actuated Mach‐Zehnder (MZ) interferometer operating with a switching power of 0.011 W and a maximum temperature difference between branches of 0.89 ºC. The MZ interferometer is covered by a Eu3+/Tb3+ co‐doped di‐ureasil luminescent molecular thermometer with a temperature uncertainty of 0.1ºC and a spatial resolution of 13 µm. This is an uncommon example in which the same material (an organic‐inorganic hybrid) that is used to fabricate a particular device (a thermal‐actuated MZ interferometer) is also used to measure one of the device intrinsic properties (the operating temperature). The photonic‐on‐a‐chip example discussed here can be applied to sense temperature gradients with high resolution (10−3 ºC·µm−1) in chip‐scale heat engines or refrigerators, magnetic nanocontacts and energy‐harvesting machines.  相似文献   

5.
In this work, we report the high temperature solid-state synthesis of red phosphors Sr2MgSi2O7: Eu3+ with various Eu3+ concentrations. Their luminescent properties at room temperature are investigated. The X-ray diffraction patterns indicate that the red phosphors powder conforms to the tetragonal Sr2MgSi2O7. Impurity structure appears when more than 20% Eu3+ is doped. The samples show a strong emission line at 615 nm and the intensity increases with the increase of Eu3+ concentration until concentration quenching occurs. Charge compensation assists in the reduction of the impurity structure and vacancies; hence the luminescent intensity is enhanced. The decay measurement indicates that the lifetime of Eu3+ emission is about 2-3 ms. Some of the Eu3+ can be reduced to Eu2+; this is also discussed.  相似文献   

6.
We have measured the luminescent properties of single crystals of LiAl5O8:Fe3+. In addition to a zero-phonon line due to Fe3+ in A-sites, we have observed another sharp fluorescent line at 699.2 nm which we assign to Fe3+ occupying B-sites. The excitation spectrum of the B-site Fe3+ shows characteristics similar to those of the A-site Fe3+ but are also shifted towards longer wavelengths. The spectra of the single crystals are compared with those of ordered and disordered powder samples.  相似文献   

7.
BAM (BaMgAl10O17:Eu2+) is a well-known phosphor used as the blue component of commercial fluorescent lamps. To improve the luminescence efficiency and chromatic properties of phosphors is a significant issue for applications in white LEDs; therefore, processing is one of the important topics to investigate. In this study, BAM (Ba0.98Eu0.02)MgAl10O17 phosphors were prepared by triethylamine (TEA) coprecipitation and solid-state reaction methods. Effects of synthesis temperature, annealing conditions in reductive atmosphere and AlF3 flux fraction on the crystal characteristics and luminescent properties of BAM phosphors were also discussed. The results showed that phosphors synthesized by TEA coprecipitation method had stronger effects on the above-mentioned properties.  相似文献   

8.
A series of tungsten-tellurite glasses activated with different concentrations (0–1.5 mol %) of Er3+ has been synthesized. The structural properties of the best luminescent sample and the optical properties of its Er3+ ions, are studied both immediate after its preparation as well as after its ageing. On ageing the glass suffers structural reorganization and generates Er2WO6—nanocrystals in the matrix, which greatly enhances the normal and upconversion green luminescence efficiency of Er3+. The nanocrystal aided enhancement of normal and upconversion luminescence of Er3+ of the glass has been attributed to the crystal field effects of the new environment of Er3+ in the nanocrystals. A phenomenon of preferential enhancement of red upconversion luminescence at the cost of green upconversion luminescence of Er3+ at its higher concentrations in the glass has been observed and the related photo-physics is proposed. The material shows the prospect of being used as NIR solar concentrator.  相似文献   

9.
Inverse opal photonic crystals of Y b3+, Er3+ co-doped TiO2 (TiO2:Yb, Er) were prepared by a self-assembly technique in combination with a sol-gel method. Upconversion (UC) luminescence properties of the inverse opals were investigated. The results show that photonic bandgap has significant influence on the upconversion emission of the TiO2:Yb, Er inverse opal photonic crystals. Significant suppression of the upconversion emission was detected if the photonic bandgap overlapped with the Er3+ ions emission band.  相似文献   

10.
在水溶液中采用化学共沉淀法制备了壳聚糖/LaF3 ∶ Eu3+纳米复合粒子。通过透射电子显微镜(TEM),X射线衍射(XRD),傅立叶变换近红外(FT-IR)光谱对样品进行了表征。结果表明:所得纳米复合粒子大小在 20 nm左右,粒径均匀,表面包覆的壳聚糖使其易溶于水,并具备了与生物蛋白偶联的多个基团。测量了该纳米复合粒子的激发光谱与发射光谱,详细说明了各发光峰对应能级的跃迁及其发光机理,分析了不同掺杂浓度对其相对发光强度的影响。结果表明:当 Eu3+离子掺杂摩尔分数为 10%时,样品的相对发光强度达到最大值。最后介绍了壳聚糖/LaF3 ∶ Eu3+纳米复合粒子与荧光蛋白 FITC偶联的方法,以表明其在生物学中潜在的应用价值。  相似文献   

11.
The sensibility of luminescent properties in transition metal doped materials to the matrices' chemical environment is explained in this paper, this is because of their strong phonon-electron coupling which are caused by the 3d electrons exposed nature. The influence of the chemical environments on the Mn2+-doped materials' optical properties, including the structure type of coordinate polyhedron, the polyhedral bridge linking manner and the lattice parameter, was illustrated in detail in this work. The impact of crystal field strength parameter (10 Dq) on the maximum energy differentiae in spontaneous emission band of Cr3+:4T2g4A2g and in excited state absorption band 4T2g4T1g (4F), and covalent bond intension's impact on the optical properties of Os4+ were also analyzed. This work's purpose is to discover the principle of the sensibility character, then we can use it to optimal the design of materials in order to find the excellent luminescent materials for practical utilization.  相似文献   

12.
Europium ion-doped CdSe hybrid nanocrystals (CdSe:Eu3+ NCs) as a class of new luminescent materials have drawn increasing attention in recent years owing to their remarkable optical properties. In this paper, we report a facile method to prepare CdSe:Eu3+ NCs using oleic acid (OA) as the capping agent. With this non-injection and one-pot synthesized approach, the formation and surface passivation of CdSe:Eu3+ NCs are performed simultaneously and result in intrinsic luminescence. The as-prepared CdSe:Eu3+ NCs are characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy (EDX). Their optical properties are also studied by UV–vis and photoluminescence spectra. Moreover, the effects of feed ratios and reaction temperatures on the optical properties are further investigated. The results show that the luminescent spectra of CdSe:Eu3+ NCs are tunable from green (490 nm) to red (630 nm) and gradually redshift with the increase of the nanoparticle size from 2.5 to 4.4 nm. Upon decoration with 2-thenoyltrifluoroacetone (TTA), the luminescence of europium ion drastically increases and efficient energy transfer from CdSe host to the europium ion is proposed. In addition, an MTT and apoptosis assay show CdSe:Eu3+ NCs have low cellular toxicity and could be used as fluorescence imaging for human epithelial type 2 (Hep-2) cells. These properties make CdSe:Eu3+ NCs a potential candidate for biological labeling, immunoassays, and optical sensing.
Graphical abstract Stable and luminescent CdSe:Eu3+ hybrid nanocrystals were synthesized, and the luminescence is tunable from green to red by the variation of reaction temperatures and feed ratios. Moreover, CdSe:Eu3+ NCs show low cellular toxicity and could be used as fluorescence probes for Hep-2 cells.
  相似文献   

13.
The paper is devoted to investigation of the luminescent properties of Dy3+ and Dy3+-Ce3+ doped single crystalline films (SCF) grown by LPE method from PbO–B2O3 flux. We have found that the YAG:Dy and YAG:Dy,Ce SCFs possess bright cathodoluminescence in the visible range and good scintillation figure of merit. For this reason LPE grown YAG:Dy and YAG:Dy,Ce SCF are proposed for different applications, namely, as cathodoluminescence screens or screens for microimaging. The Dy3+ co-doping can be also proposed for improvement of the scintillation efficiency of the Ce3+ doped garnet compounds in the SCF form due to Dy3+→ Ce3+ energy transfer and removing the trap related centers in the above RT range.  相似文献   

14.
A novel and easy synthesis of highly luminescent rare-earth ion-doped LnF3 (LnF3:Re) nanocrystals by ionic liquid-based hydrothermal process was reported. Ionic liquids [bmim]BF4 (1-butyl, 2-methylimidazolium tetrafluoroborate) acts as co-solvent, template and reactant. X-ray diffraction and field emission scanning electron microscopy were used to characterize the structural properties of the products. The luminescent properties of LaF3:Re nanocrystals were evaluated under ultraviolet (397 nm for Eu3+, 254 nm for Ce3+, Tb3+) and (or) near-infrared (980 nm for Er3+) excitation. Under 980 nm laser excitation, intense green upconversion emissions were observed for LaF3:Er(1%) samples in the solid state and dispersion in water and ethanol. The quantum efficiency of LaF3:Ce(15%),Tb(5%) nanocrystals was about 34%. Our reports provide a facile method for the preparation of LnF3:Re nanocrystals with excellent photoluminescent properties.  相似文献   

15.
Luminescent glasses activated with Sm3+ ions are of current interest given their potential for a wide range of photonic applications. In this work, Sm3+-containing P2O5:BaO glasses are prepared by a simple melt-quench method, and the influence of CuO and SnO co-doping on Sm3+ photoluminescence (PL) is investigated. Optical absorption, solid-state 31P nuclear magnetic resonance spectroscopy, and PL spectroscopy are employed in the assessment of material optical and structural properties. The data indicates that monovalent copper ions and twofold-coordinated Sn centers are successfully stabilized in the matrix and both species can enhance the orange–red emission of Sm3+ ions. The optical properties of the material after heat treatment have been also assessed. Results indicate the chemical reduction of ionic copper via Sn2+ ultimately producing Cu nanoparticles as evidenced by the surface plasmon resonance. As a result, Sm3+ PL diminishes consistent with an excitation energy transfer to plasmonic Cu particles, i.e. the “plasmonic diluent” effect prevails.  相似文献   

16.
The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol–gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core–shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core–shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.  相似文献   

17.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

18.
In this work, we used the hydrothermal method to synthesize Yb3+ and Er3+ ions doped cubic Y2O3 nanostructures, which is an upconversion luminescent material. Three distinct shapes such as nanotubes, nanospheres and nanoflakes formed in the products by adjusting the pH value of reacting solution. Powder X-ray diffraction analyses indicate that all the three nanostructures were pure cubic phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong visible upconversion luminescence under the excitation of a 978-nm diode laser. The FTIR and fluorescent decay measurements at the size and morphology of sample changed from tubes to flakes indicate that the OH group is the origin of luminescent efficiency change. OH ions with high vibration frequency provide an efficient means to quench the luminescence. However, the relative intensity and pump-power dependence of the green and red emissions varies with the three nanostructures possessing different size and morphology.  相似文献   

19.
Cellulose hydrogels are biodegradable materials that can be applied as accommodating hosts for various species. Here we report the preparation of novel thin films based on luminescent cellulose hydrogels. The spectroscopic behavior of these soft materials and their sensing effects are investigated. Interestingly, we found that these films only give selective signal changes in the presence of Cu2+ in water in comparison with Na+, K+, Ag+, Mn2+, Co2+, Ca2+, Cd2+, Hg2+, Pd2+, Mg2+, Ni2+, Fe2+, and Fe3+. High visible-light transmittance and good flexibility for these films can be observed. More importantly, the thermal stability of rare-earth complexes could be significantly enhanced in aqueous solution as result of the protection by hydrogel matrix.  相似文献   

20.
The vaccum-ultra-violet (VUV)- and UV-excited luminescent properties of MgGa2O4:Mn2+ phosphor with various co-dopants were investigated. Spinel-structured manganese-activated magnesium gallate exhibited intense green emission with the spectrum centered at 503 nm under 147 and 254 nm excitation induced by the transition from the lowest excited state to the ground state, 4T1-6A1, of the tetrahedral-sited Mn2+. With optimized incorporation ranges, Eu3+, Ce3+ and Al3+ co-doping, enhanced the overall fluorescence efficiency under 147 nm and these could be tentatively interpreted in terms of optical properties of host compounds and co-doped ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号