首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
余振兴  冯军 《半导体学报》2013,34(8):99-105
A broadband distributed passive gate-pumped mixer(DPGM) using standard 0.18μm CMOS technology is presented.By employing distributed topology,the mixer can operate at a wide frequency range.In addition,a fourth-order low pass filter is applied to improve the port-to-port isolation.This paper also analyzes the impedance match and conversion loss of the mixer,which consumes zero dc power and exhibits a measured conversion loss of 9.4—17 dB from 3 to 40 GHz with a compact size of 0.78 mm~2.The input referred 1 dB compression point is higher than 4 dBm at a fixed IF frequency of 500 MHz and RF frequency of 23 GHz,and the measured RF-to-LO, RF-to-IF and LO-to-IF isolations are better than 21,38 and 45 dB,respectively.The mixer is suitable for WLAN, UWB,Wi-Max,automotive radar systems and other millimeter-wave radio applications.  相似文献   

2.
正A radio frequency(RF) receiver frontend for single-carrier ultra-wideband(SC-UWB) is presented. The front end employs direct-conversion architecture,and consists of a differential low noise amplifier(LNA),a quadrature mixer,and two intermediate frequency(IF) amplifiers.The proposed LNA employs source inductively degenerated topology.First,the expression of input impedance matching bandwidth in terms of gate-source capacitance, resonant frequency and target S_(11) is given.Then,a noise figure optimization strategy under gain and power constraints is proposed,with consideration of the integrated gate inductor,the bond-wire inductance,and its variation.The LNA utilizes two stages with different resonant frequencies to acquire flat gain over the 7.1-8.1 GHz frequency band,and has two gain modes to obtain a higher receiver dynamic range.The mixer uses a double balanced Gilbert structure.The front end is fabricated in a TSMC 0.18-/im RF CMOS process and occupies an area of 1.43 mm~2.In high and low gain modes,the measured maximum conversion gain are 42 dB and 22 dB,input 1 dB compression points are -40 dBm and -20 dBm,and S_(11) is better than -18 dB and -14.5 dB.The 3 dB IF bandwidth is more than 500 MHz.The double sideband noise figure is 4.7 dB in high gain mode.The total power consumption is 65 mW from a 1.8 V supply.  相似文献   

3.
郭瑞  张海英 《半导体学报》2012,33(9):102-107
正A fully integrated multi-mode multi-band directed-conversion radio frequency(RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented.The front-end employs direct-conversion design,and consists of two differential tunable low noise amplifiers(LNA),a quadrature mixer,and two intermediate frequency(IF) amplifiers.The two independent tunable LNAs are used to cover all the four frequency bands,achieving sufficient low noise and high gain performance with low power consumption.Switched capacitor arrays perform a resonant frequency point calibration for the LNAs.The two LNAs are combined at the driver stage of the mixer,which employs a folded double balanced Gilbert structure,and utilizes PMOS transistors as local oscillator(LO) switches to reduce flicker noise.The front-end has three gain modes to obtain a higher dynamic range.Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface(SPI) module.The frontend is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm~2.The measured doublesideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply.  相似文献   

4.
A new,low complexity,ultra-wideband 3.1-10.6 GHz low noise amplifier(LNA),designed in a chartered 0.18μm RFCMOS technology,is presented.The ultra-wideband LNA consists of only two simple amplifiers with an inter-stage inductor connected.The first stage utilizing a resistive current reuse and dual inductive degeneration technique is used to attain a wideband input matching and low noise figure.A common source amplifier with an inductive peaking technique as the second stage achieves high flat gain and wide -3 dB bandwidth of the overall amplifier simultaneously.The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB,and a high reverse isolation of—45 dB,and good input/output return losses are better than -10 dB in the frequency range of 3.1-10.6 GHz.An excellent noise figure(NF) of 2.8-4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V.An input-referred third-order intercept point(IIP3) is -7.1 dBm at 6 GHz.The chip area,including testing pads,is only 0.8×0.9 mm2.  相似文献   

5.
正This paper presents a broadband Gilbert low noise mixer implemented with noise cancellation technique operating between 10 MHz and 0.9 GHz.The Gilbert mixer is known for its perfect port isolation and bad noise performance.The noise cancellation technique of LNA can be applied here to have a better NF.The chip is implemented in SMIC 0.18μm CMOS technology.Measurement shows that the proposed low noise mixer has a 13.7-19.5 dB voltage gain from 10 MHz to 0.9 GHz,an average noise figure of 5 dB and a minimum value of 4.3 dB.The core area is 0.6 x 0.45 mm~2.  相似文献   

6.
A fully integrated direct-conversion digital satellite tuner for DVB-S/S2 and ABS-S applications is presented.A broadband noise-canceling Balun-LNA and passive quadrature mixers provided a high-linearity low noise RF front-end,while the synthesizer integrated the loop filter to reduce the solution cost and system debug time.Fabricated in 0.18μm CMOS,the chip achieves a less than 7.6 dB noise figure over a 900-2150 MHz L-band, while the measured sensitivity for 4.42 MS/s QPSK-3/4 mode is -91 dBm at the PCB connector.The fully integrated integer-N synthesizer operating from 2150 to 4350 MHz achieves less than 1℃integrated phase error. The chip consumes about 145 mA at a 3.3 V supply with internal integrated LDOs.  相似文献   

7.
This paper presents the design and implementation of a fully integrated multi-band RF receiver frontend for GNSS applications on L-band.A single RF signal channel with a low-IF architecture is adopted for multi-band operation on the RF section,which mainly consists of a low noise amplifier(LNA),a down-converter,polyphase filters and summing circuits.An improved cascode source degenerated LNA with a multi-band shared off-chip matching network and band switches is implemented in the first amplifying stage....  相似文献   

8.
A low power high gain gain-controlled LNAC+mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load.Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNACmixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNAC+mixer, a previous low power LNAC+mixer, and the proposed LNAC+mixer are presented. The circuit is implemented in 0.18 m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2and consumes 2 mA current under 1.8 V supply.  相似文献   

9.
A CMOS voltage reference circuit based on sub-threshold MOSFETs is proposed,which utilizes a temperature-dependent threshold voltage,a peaking current mirror and sub-threshold technology.The reference has been fabricated in an SMIC 0.13μm CMOS process with only MOS transistors and resistors.The experimental results show a reference voltage variation of 2 mV for a supply voltage ranging from 0.5 to 1.2 V and 0.8 mV for temperatures from -20 to 120℃.The proposed circuit generates a reference voltage of 140 mV and consumes a supply current of 0.8μA at room temperature.The occupied area is only 0.019 mm~2.  相似文献   

10.
A low power and low voltage∑△analog-to-digital modulator is realized with digital CMOS technology, which is due to full compensated depletion mode capacitors.Compared with mixed signal technology,this type of modulator is more compatible for pure digital applications.A pseudo-two-stage class-AB OTA is used in switchedcapacitor integrators for low voltage and low power.The modulator is realized in standard SMIC 0.18μm 1P6M digital CMOS technology.Measured results show that with 1.2 V supply voltage and a 6 MHz sample clock,the dynamic range of the modulator is 84 dB and the total power dissipation is 2460μW.  相似文献   

11.
This paper presents the design and implementation of a fully integrated multi-band RF receiver frontend for GNSS applications on L-band.A single RF signal channel with a low-IF architecture is adopted for multi-band operation on the RF section,which mainly consists of a low noise amplifier (LNA),a down-converter,polyphase filters and summing circuits.An improved cascode source degenerated LNA with a multi-band shared off-chip matching network and band switches is implemented in the first amplifying stage.Also,a re-designed wideband double balance mixer is implemented in the down conversion stage,which provides better gain,noise figure and linearity performances.Using a TSMC 0.18μm 1P4M RF CMOS process,a compact 1.27 GHz/1.575 GHz dualband GNSS frontend is realized in the proposed low-IF topology.The measurements exhibit the gains of 45 dB and 43 dB,and noise figures are controlled at 3.35 dB and 3.9 dB of the two frequency bands,respectively.The frontend model consumes about 11.8-13.5 mA current on a 1.8 V power supply.The core occupies 1.91 × 0.53 mm2 while the total die area with ESD is 2.45 × 2.36 mm2.  相似文献   

12.
彭苗  林敏  石寅  代伐 《半导体学报》2011,32(12):101-106
A 2.4 GHz radio frequency receiver front end with an on-chip transformer compliant with IEEE 802.11b/g standards is presented.Based on zero-IF receiver architecture,the front end comprises a variable gain common-source low noise amplifier with an on-chip transformer as its load and a high linear quadrature folded Gilbert mixer.As the load of the LNA,the on-chip transformer is optimized for lowest resistive loss and highest power gain.The whole front end draws 21 mA from 1.2 V supply,and the measured results show a double side band noise figure of 3.75 dB,-31 dBm IIP3 with 44 dB conversion gain at maximum gain setting.Implemented in 0.13μm CMOS technology,it occupies a 0.612 mm~2 die size.  相似文献   

13.
徐晖  冯军  刘全  李伟 《半导体学报》2011,32(10):97-102
A 3.125-Gb/s transimpedance amplifier(TIA) for an optical communication system is realized in 0.35μm CMOS technology.The proposed TIA employs a regulated cascode configuration as the input stage, and adopts DC-cancellation techniques to stabilize the DC operating point.In addition,noise optimization is processed. The on-wafer measurement results show the transimpedance gain of 54.2 dBΩand -3 dB bandwidth of 2.31 GHz.The measured average input referred noise current spectral density is about 18.8 pA/(?).The measured eye diagram is clear and symmetrical for 2.5-Gb/s and 3.125-Gb/s PRBS.Under a single 3.3-V supply voltage,the TIA consumes only 58.08 mW,including 20 mW from the output buffer.The whole die area is 465×435μm~2.  相似文献   

14.
正This paper presents a wideband low noise amplifier(LNA) for multi-standard radio applications.The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gateinductive -peaking technique.High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band.Fabricated in 0.18μm CMOS process,the LNA achieves 2.5 GHz of -3 dB bandwidth and 16 dB of gain.The gain variation is within±0.8 dB from 300 MHz to 2.2 GHz.The measured noise figure(NF) and average HP3 are 3.4 dB and -2 dBm,respectively.The proposed LNA occupies 0.39 mm2 core chip area.Operating at 1.8 V,the LNA drains a current of 11.7 mA.  相似文献   

15.
樊祥宁  陶健  包宽  王志功 《半导体学报》2016,37(8):085001-8
This paper presents a reconfigurable quadrature passive mixer for multimode multistandard receivers. By using controllable transconductor and transimpedance-amplifier stages, the voltage conversion gain of the mixer is reconfigured according to the requirement of the selected communication standard Other characteristics such as noises figure, linearity and power consumption are also reconfigured consequently. The design concept is verified by implementing a quadrature passive mixer in 0.18 μm CMOS technology. On wafer measurement results show that, with the input radio frequency ranges from 700 MHz to 2.3 GHz, the mixer achieves a controllable voltage conversion gain from 4 to 22 dB with a step size of 6 dB. The measured maximum ⅡP3 is 8.5 dBm and the minimum noise figure is 8.0 dB. The consumed current for a single branch (I or Q) ranges from 3.1 to 5.6 mA from a 1.8 V supply voltage. The chip occupies an area of 0.71 mm2 including pads.  相似文献   

16.
A CMOS fluorescent detector system for biological experiment is presented. This system integrates a CMOS compatible photodiode, a capacitive trans-impedance amplifier (CTIA), and a 12 bit pipelined analog-to- digital converter (ADC), and is implemented in a 0.18μm standard CMOS process. Some special techniques, such as a "contact imaging" detecting method, pseudo-differential architecture, dummy photodiodes, and a T-type reset switch, are adopted to achieve low-level sensing application. Experiment results show that the Nwell/Psub photodiode with CTIA pixel achieves a sensitivity of 0.1 A/W at 515 nm and a dark current of 300 fA with 300 mV reverse biased voltage. The maximum differential and integral nonlinearity of the designed ADC are 0.8 LSB and 3 LSB, respectively. With an integrating time of 50 ms, this system is sensitive to the fluorescence emitted by the fluorescein solution with concentration as low as 20 ng/mL and can generate 7 fA photocurrent. This chip occupies 3 mm^2 and consumes 37 mW.  相似文献   

17.
18.
This paper presents an inductorless complementary-noise-canceling LNA(CNCLNA) for TV tuners.The CNCLNA exploits single-to-differential topology,which consists of a common gate stage and a common source stage. The complementary topology can save power and improve the noise figure.Linearity is also enhanced by employing a multiple gated transistors technique.The chip is implemented in SMIC 0.18μm CMOS technology.Measurement shows that the proposed CNCLNA achieves 13.5-16 dB voltage gain from 50 to 860 MHz,...  相似文献   

19.
This paper reports a wideband passive mixer for direct conversion multi-standard receivers.A brief comparison between current-commutating passive mixers and active mixers is presented.The effect of source and load impedance on the linearity of a mixer is analyzed.Specially,the impact of the input impedance of the transimpedance amplifier(TIA),which acts as the load impedance of a mixer,is investigated in detail.The analysis is verified by a passive mixer implemented with 0.18 m CMOS technology.The circuit is inductorless and can operate over a broad frequency range.On wafer measurements show that,with radio frequency(RF) ranges from 700 MHz to 2.3 GHz,the mixer achieves 21 dB of conversion voltage gain with a-1 dB intermediate frequency(IF) bandwidth of 10 MHz.The measured IIP3 is 9 dBm and the measured double-sideband noise figure(NF) is 10.6 dB at 10 MHz output.The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.  相似文献   

20.
A low power wavelet denoising chip for photoplethysmography (PPG) detection and portable heart rate monitoring is presented. To eliminate noise and improve detection accuracy, Harr wavelet (HWT) is chosen as the processing tool. An optimized finite impulse response structure is proposed to lower the computational complexity of proposed algorithm, which is benefit for reducing the power consumption of proposed chip. The modulus maxima pair location module is design to accurately locate the PPG peaks. A clock control unit is designed to further reduce the power consumption of the proposed chip. Fabricated with the 0.18 μm N-well CMOS 1P6M technology, the power consumption of proposed chip is only 8.12 μ W in 1 V voltage supply. Validated with PPG signals in multiparameter intelligent monitoring in intensive care databases and signals acquired by the wrist photoelectric volume detection front end, the proposed chip can accurately detect PPG signals. The average sensitivity and positive prediction are 99.91% and 100%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号