首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Mixed convection boundary layer flows of non-Newtonian fluids over the wavy surfaces are studied by the coordinate transformation and the cubic spline collocation numerical method. The effects of the wavy geometry, the buoyancy parameter and the generalized Prandtl number for pseudoplastic fluids, Newtonian fluids and dilatant fluids on the skin-friction coefficient, local and mean Nusselt numbers have been graphically studied. Results show that both higher generalized Prandtl numbers and buoyancy parameters are seen to enhance the influence of wavy surfaces on the local Nusselt number, irrespective of whether the fluids are Newtonian fluids or non-Newtonian fluids. Moreover, the irregular surfaces have higher total heat flux than that of corresponding flats plate for any fluid.  相似文献   

2.
The self-similar solutions of the boundary layer for a non-Newtonian fluid in MHD were considered in [1, 2] for a power-law velocity distribution along the outer edge of the layer and constant electrical conductivity through the entire flow. However, the MHD flows of many conducting media, which are solutions or molten metals, cannot be described by the MHD equations for non-Newtonian fluids.The self-similar solutions of the boundary layer for a non-Newtonian fluid without account for interaction with the electromagnetic field were studied in [3].In the following we present the self-similar solutions for the boundary layer of pseudoplastic and dilatant fluids with account for the interaction with an electromagnetic field for the case of a power-law velocity distribution along the outer edge of the layer, when the conductivity of the fluid is constant throughout the flow and the magnetic Reynolds number is small.Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 2, No. 6, pp. 77–82, 1967The author wishes to thank S. V. Fal'kovich for his interest in this study.  相似文献   

3.
The analysis of the group properties and the search for self-similar solutions in problems of mathematical physics and continuum mechanics have always been of interest, both theoretical and applied [1–3]. Self-similar solutions of parabolic problems that depend only on a variable of the type η = x/√t are classical fundamental solutions of the one-dimensional linear and nonlinear heat conduction equations describing numerous physical phenomena with initial discontinuities on the boundary [4]. In this study, the term “generalized vortex diffusion” is introduced in order to unify the different processes in mechanics modeled by these problems. Here, vortex layer diffusion and vortex filament diffusion in a Newtonian fluid [5] can serve as classical hydrodynamic examples. The cases of self-similarity with respect to the variable η are classified for fairly general kinematics of the processes, physical nonlinearities of the medium, and types of boundary conditions at the discontinuity points. The general initial and boundary value problem thus formulated is analyzed in detail for Newtonian and non-Newtonian power-law fluids and a medium similar in behavior to a rigid-ideally plastic body. New self-similar solutions for the shear stress are derived.  相似文献   

4.
Periodic wave solutions in a film of viscous liquid near optimal regimes have been investigated in the boundary layer approximation by Shkadov et al. [1]. Urintsev [2] has found nonlinear steady solutions near the upper neutral stability curve on the basis of the Navier-Stokes equations. In the present paper, equations are derived that can be used either to make the boundary-layer solution more accurate or estimate its applicability. Soliton type solutions are considered for parameter of the problem in the range δ ε (0, ∞). Asymptotic expansions are considered in the limits δ → 0 and δ → ∞. For finite δ, two numerical algorithms are proposed for solving the problem; one of them is for equations in von Mises variables. The numerical solutions revealed the existence of “singular” sections, at which the velocity profile differs strongly from parabolic. The integral characteristics of the soliton — the phase velocity, amplitude, etc. — are found to be close to the corresponding characteristics obtained earlier by the present author [3] by assuming that the velocity profile is parabolic. The first determination is made of the critical value δ = δ** of the onset of boundary layer separation in the vertically flowing viscous film. It is interesting that the separation does not occur on the rigid wall but at an interface near the crest of the soliton.  相似文献   

5.
A similarity analysis of three-dimensional boundary layer equations of a class of non-Newtonian fluid in which the stress, an arbitrary function of rates of strain, is studied. It is shown that under any group of transformation, for an arbitrary stress function, not all non-Newtonian fluids possess a similarity solution for the flow past a wedge inclined at arbitrary angle except Ostwald-de-Waele power-law fluid. Further it is observed, for non-Newtonian fluids of any model only 90° of wedge flow leads to similarity solutions. Our results contain a correction to some flaws in Pakdemirli׳s [14] (1994) paper on similarity analysis of boundary layer equations of a class of non-Newtonian fluids.  相似文献   

6.
A flow of viscous compressible fluid in the neighborhood of the line of interaction of wall flows is considered. A method of calculating the line of interaction and the direction of the self-induced secondary flow is developed. Papers [1–3] are devoted to the simulation of a separation flow with singularities in the neighborhood of singular lines and points, where boundary-layer equations are invalid. However, the theories of local separation used at present have mainly been developed only for two-dimensional problems, while the models of viscous-inviscid interaction have restrictions in application for turbulent flows with developed separation. The interaction of three-dimensional wall turbulent flows is considered below. It is assumed that the thickness of the boundary layers and the scales of the interaction zones are small in comparison with the characteristic dimension of the system, while the line of discontinuity of the solutions of the three-dimensional boundary layer equations is the same as the line of interaction of the wall flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 53–59, March–April, 1987.The author is grateful to G. Yu. Stepanov and V. N. Ershov for their interest in my work and their valuable remarks.  相似文献   

7.
Planar and axisymmetric flows of a multicomponent compressible gas in a laminar boundary layer with nonzero tangential component of the velocity on a permeable surface are considered. The asymptotic solutions of the boundary-layer equations obtained earlier [1–4] for large values of the blowing and suction parameters are generalized to the case when the velocity vector of the blown or extracted gas makes an acute angle with the surface of the body, this angle depending on the longitudinal coordinate. The region of applicability of the asymptotic formulas is estimated on the basis of the results of numerical solution of the boundary-layer equations. The results are given of some calculations of the boundary layer on a partly moving surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 28–36, September–October, 1979.We thank G. A. Tirskii and G. G. Chernyi for a helpful discussion of the results.  相似文献   

8.
A separation criterion, i.e., a definite relationship between the external flow and the boundary layer parameters [1], can be used to estimate the possibility of the origination of separation of a two-dimensional boundary layer. A functional form of the separation criterion has also been obtained for a three-dimensional boundary layer [2] on the basis of dimensional analysis. As in the case of the two-dimensional boundary layer, locally self-similar solutions can be used to determine the specific magnitude of the separation criterion as a function of the values of the governing parameters. Locally self-similar solutions of the two-dimensional laminar boundary-layer equations have been found at the separation point for a perfect gas with a linear dependence of the coefficient of viscosity on the temperature (Ω=1) and Prandtl number P=1 [3, 4]. The influence of blowing and suction has been studied for this case [5]. Self-similar solutions have been obtained for Ω=1, P=0.723 for the limit case of hypersonic perfect gas flow [6]. Locally self-similar solutions of the three-dimensional laminar boundary-layer equations at the separation point are presented in [7] for a perfect gas with Ω=1, P=1. There are no such computations for Ω≠1, P≠1; however, the results of computing several examples for a two-dimensional flow [8] show that the influence of the real properties of a gas can be significant and should be taken into account. Self-similar solutions of the two- and three-dimensional boundary-layer equations at the separation point are found in this paper for a perfect gas with a power-law dependence of the viscosity coefficient on the enthalpy (Ω=0.5, 0.75, 1.0) for different values of the Prandtl number (P=0.5, 0.7, 1.0) in a broad range of variation of the external stream velocity (v 1 2 /2h1* = 0–0.99) and the temperature of the streamlined surface. Magnitudes of the separation criterion for a laminar boundary layer have been obtained on the basis of these data.  相似文献   

9.
In previous papers, e.g., [1, 2], boundary-layer separation was investigated by analyzing solutions of the boundary-layer equations with a given external pressure distribution. In general, this kind of solution cannot be continued after the separation point. Study of the asymptotic behavior of solutions of the Navier-Stokes equations [3–5] shows that, in boundarylayer separation in supersonic flow over a smooth surface, the main effect on the flow in the immediate vicinity of the separation point is a large local pressure gradient induced by interaction with the external flow. The solution can be continued beyond the separation point and linked to the solutions in the other regions, located downstream [5]. Similar results for incompressible flow were recently obtained in [6]. We can assume that in general there is always a small region near the separation point in which separation is self-induced, and where the limiting solution of the Navier-Stokes equations does not contain unattainable singular points. However, this limiting slope picture can be more complex and can contain more regions where the behavior of the functions differed from that found in [3–6]. The present paper investigates separation on a body moving at hypersonic speed, where the ratio of the stagnation temperature to the body temperature is large. It is shown that both. for hypersonic and supersonic speeds the flow near the separation point is appreciably affected by the distribution of parameters over the entire unperturbed boundary layer, and not only in a narrow layer near the body, as was true in the flows studied earlier [3–6]. Regions may appear with appreciable transverse pressure drops within the zone occupied by layers of the unperturbed boundary layer. Similarity parameters are given, the boundary problems are formulated, and the results of computer calculation are presented. The concept of subcritical and supercritical boundary layers is refined, and the dependence of pressure coefficients responsible for separation on the temperature factor is established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 99–109, November–December 1973.  相似文献   

10.
An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving the problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics. The project supported by the National Natural Science Foundation of China (No.19902010).  相似文献   

11.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

12.
Lie group theory is used to obtain point symmetries of the boundary layer equations derived in the literature for the high Weissenberg number flow of upper convected Maxwell (UCM) and Phan-Tien-Tanner (PTT) type of viscoelastic fluids. The equations are reduced to ordinary differential equation systems with the use of scaling and spiral transformation groups. Similarity solutions are obtained and discussed for different cases such as flow around corners, flow over moving and stretching walls, and exponential shear flows.  相似文献   

13.
The equations of the three-dimensional laminar boundary layer on lines of flow outflow and inflow are studied for conical outer flow under the assumption that the Prandtl number and the productρμ are constant. It is shown that in the case of a positive velocity gradient of the secondary flow (α1>0) the additional conditions which result from the physical flow pattern determine a unique solution of the system of boundary-layer equations. For a negative velocity gradient of the secondary flow (α1≤0) these conditions are satisfied by two solutions. An approximate solution is obtained for the boundary layer equations which is in rather good agreement with the numerical integration results. Compressible gas flow in a three-dimensional laminar boundary layer is described by a system of nonlinear differential equations whose solution is not unique for given boundary conditions. Therefore additional conditions resulting from the physical pattern of the gas flow are imposed on the resulting solution. In the solution of problems with a negative pressure gradient these additional conditions are sufficient for a unique selection of the solution of the boundary-layer equations. However, in the case of a positive pressure gradient the solution of the boundary-layer equations satisfying the boundary and additional conditions may not be unique. In particular, in [1] in a study of a three-dimensional laminar boundary layer in the vicinity of the stagnation point it was shown that for $$c = {{\frac{{\partial v_e }}{{\partial y}}} \mathord{\left/ {\vphantom {{\frac{{\partial v_e }}{{\partial y}}} {\frac{{\partial u_e }}{{\partial x}}}}} \right. \kern-\nulldelimiterspace} {\frac{{\partial u_e }}{{\partial x}}}} > 0$$ the solution is unique, while for c<0 there are two solutions. In the present paper we study the question of the uniqueness of the self-similar solution of the three-dimensional laminar boundary-layer equations on lines of flow outflow and inflow for a conical outer flow.  相似文献   

14.
Elastic layers bonded to rigid surfaces have widely been used in many engineering applications. It is commonly accepted that while the bonded surfaces slightly influence the shear behavior of the layer, they can cause drastic changes on its compressive and bending behavior. Most of the earlier studies on this subject have been based on assumed displacement fields with assumed stress distributions, which usually lead to “average” solutions. These assumptions have somehow hindered the comprehensive study of stress/displacement distributions over the entire layer. In addition, the effects of geometric and material properties on the layer behavior could not be investigated thoroughly. In this study, a new formulation based on a modified Galerkin method developed by Mengi [Mengi, Y., 1980. A new approach for developing dynamic theories for structural elements. Part 1: Application to thermoelastic plates. International Journal of Solids and Structures 16, 1155–1168] is presented for the analysis of bonded elastic layers under their three basic deformation modes; namely, uniform compression, pure bending and apparent shear. For each mode, reduced governing equations are derived for a layer of arbitrary shape. The applications of the formulation are then exemplified by solving the governing equations for an infinite-strip-shaped layer. Closed form expressions are obtained for displacement/stress distributions and effective compression, bending and apparent shear moduli. The effects of shape factor and Poisson’s ratio on the layer behavior are also investigated.  相似文献   

15.
In this paper the conditions for the existence of self-similar solutions of the equations governing unsteady flows through a porous medium are presented and discussed. The first two sections deal with the case of non-Newtonian fluids of power-law behavior; the third section analyzes the case of non-Darcy gas flows. The boundary and initial conditions occuring currently in a large class of fluid mechanics problems, of practical interest in engineering, are considered.  相似文献   

16.
The treatment of non-linear partial differential equations of unsteady flows of non-Newtonian fluids generally leads to the use of numerical methods.The present method consists in approximating the practical shear stress/rate-of-strain curve (called here the rheogram) by a series of piecewise continuous linear segments. This method involves the solution of the linear differential equation system using a computer. The study is on unsteady laminar flows of pseudoplastic, dilatant and Bingham fluids. The results obtained by this method are compared with those determined by Laser Doppler anemometry using the Bragg cell. The results are concordant.  相似文献   

17.
If the speed of the outer flow at the edge of the boundary layer does not depend on the time and is specified in the form of a power-law function of the longitudinal coordinate, then a self-similar solution of the boundary-layer equations can be found by integrating a third-order ordinary differential equation (see [1–3]). When the exponent of the power in the outerflow velocity distribution is negative, a self-similar solution satisfying the equations and the usually posed boundary conditions is not uniquely determinable [4], A similar result was obtained in [5] for flows of a conducting fluid in a magnetic field. In the present paper we study the behavior of non-self-similar perturbations of a self-similar solution, enabling us to provide a basis for the choice of a self-similar solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 42–46, July–August, 1974.  相似文献   

18.
The steady boundary-layer flow of a non-Newtonian fluid, represented by a power-law model, over a moving wedge in a moving fluid is studied in this paper. The transformed boundary-layer equation is solved numerically for some values of the involved parameters. The effects of these parameters on the skin friction coefficient are analyzed and discussed. It is found that multiple solutions exist when the wedge and the fluid move in the opposite directions, near the region of separation. It is also found that the drag force is reduced for dilatant fluids compared to pseudo-plastic fluids.  相似文献   

19.
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.  相似文献   

20.
By appropriate choosing the time scale, any fluid within a class described by Coleman and Noll [6] will have rapidly fading memory. For this class of fluids equations are derived which govern the perturbations of arbitrary plane shear flows. These equations contain the equations of Becker [3] as a special case. On the basis of them it is shown that for large enough shear rate the local stress power generated by the perturbations is non-positive. Results relating to the stress power obtained by Akbay and Sponagel [2] on the basis of Becker's [3] equations are placed in context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号