首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echo-planar imaging is widely used in functional neuroimaging but suffers from its pronounced sensitivity to field inhomogeneities that cause geometric distortions and image blurring which both limit the effective in-plane resolution achievable. In this work, it is shown how inner-field-of-view techniques based on 2D-selective RF excitations (2DRF) can be applied to reduce the field-of-view in the phase-encoding direction without aliasing and increase the in-plane resolution accordingly. Free-induction-decay (FID) EPI and echo-train-shifted (T2*-weighted) and standard (T2-weighted) spin-echo (SE) EPI with in-plane resolutions of up to 0.5×1.0 mm2 (slice thickness 5 mm) were acquired at 3 T. Unwanted signal contributions of 2DRF side excitations were shifted out of the object (FID-EPI) or of the refocusing plane by tilting the excitation plane (SE-EPI). Brain activation in healthy volunteers was investigated with checkerboard and finger-tapping block-design paradigms. Brain activation could be detected with all sequences and contrasts, most reliably with FID-EPI due to its higher signal amplitude and the longer 2DRF excitation that are more sensitive to magnetic field inhomogeneities. In conclusion, inner-FOV EPI based on 2DRF excitations could help to improve the spatial resolution of fMRI of focal target regions, e.g. for applications in the spinal cord.  相似文献   

2.
3.
4.
This positron emission tomography study used a correlational design to investigate neural activity during speech perception in six normal subjects and two aphasic patients. The normal subjects listened either to speech or to signal-correlated noise equivalents; the latter were nonspeech stimuli, similar to speech in complexity but not perceived as speechlike. Regions common to the auditory processing of both types of stimuli were dissociated from those specific to spoken words. Increasing rates of presentation of both speech and nonspeech correlated with cerebral activity in bilateral transverse gyri and adjacent superior temporal cortex. Correlations specific to speech stimuli were located more anteriorly in both superior temporal sulci. The only asymmetry in normal subjects was a left lateralized response to speech in the posterior superior temporal sulcus, corresponding closely to structural asymmetry on the subjects' magnetic resonance images. Two patients, who had left temporal infarction but performed well on single word comprehension tasks, were also scanned while listening to speech. These cases showed right superior temporal activity correlating with increasing rates of hearing speech, but no significant left temporal activation. These findings together suggest that the dorsolateral temporal cortex of both hemispheres can be involved in prelexical processing of speech.  相似文献   

5.
6.

Background  

The specific role of the two cerebral hemispheres in processing idiomatic language is highly debated. While some studies show the involvement of the left inferior frontal gyrus (LIFG), other data support the crucial role of right-hemispheric regions, and particularly of the middle/superior temporal area. Time-course and neural bases of literal vs. idiomatic language processing were compared. Fifteen volunteers silently read 360 idiomatic and literal Italian sentences and decided whether they were semantically related or unrelated to a following target word, while their EEGs were recorded from 128 electrodes. Word length, abstractness and frequency of use, sentence comprehensibility, familiarity and cloze probability were matched across classes.  相似文献   

7.
Superconducting quantum interference devices (SQUIDs) have been widely utilized in biomedical applications due to their extremely high sensitivity to magnetic signals. The present study explores the feasibility of a new type of nanotechnology-based imaging method using standard clinical magnetoencephalographic (MEG) systems equipped with SQUID sensors. Previous studies have shown that biological targets labeled with non-toxic, magnetized nanoparticles can be imaged by measuring the magnetic field generated by these particles. In this work, we demonstrate that (1) the magnetic signals from certain nanoparticles can be detected without magnetization using standard clinical MEG, (2) for some types of nanoparticles, only bound particles produce detectable signals, and (3) the magnetic field of particles several hours after magnetization is significantly stronger than that of un-magnetized particles. These findings hold promise in facilitating the potential application of magnetic nanoparticles to in vivo tumor imaging. The minimum amount of nanoparticles that produce detectable signals is predicted by theoretical modeling and computer simulation.  相似文献   

8.
The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.  相似文献   

9.
A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated four SERF magnetometer channels, which provides sufficient spatial resolution for magnetoencephalography(MEG). The four channels share the same laser beam for the best cancellation of common mode noise due to laser fluctuations. With gradient measurement, the sensitivities of the four sensors are better than 6 fT/Hz~(1/2), which is also good enough for MEG measurement. The vapor cell is heated to 160℃ by a novel nonmagnetic current-heating structure. Our sensor with high spatial resolution and compact size is particularly suitable for MEG systems.  相似文献   

10.
Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneities including those caused by B0 inhomogeneities and chemical shift offsets. Utilizing the inherent robustness of SPEN, it was previously shown that RASER can be used to successfully perform functional MRI (fMRI) experiments in the orbitofrontal cortex — a task which is challenging using EPI due to strong magnetic susceptibility variation near the air-filled sinuses. Despite this superior performance, systematic analyses have shown that, in its initial implementation, the use of SPEN was penalized by lower signal-to-noise ratio (SNR) and higher radiofrequency power deposition as compared to EPI-based methods. A recently developed reconstruction algorithm based on super-resolution principles is able to alleviate both of these shortcomings; the use of this algorithm is hereby explored within an fMRI context. Specifically, a series of fMRI measurements on the human visual cortex confirmed that the super-resolution algorithm retains the statistical significance of the blood oxygenation level dependent (BOLD) response, while significantly reducing the power deposition associated with SPEN and restoring the SNR to levels that are comparable with those of EPI.  相似文献   

11.
We present a noninvasive technique which allows the anatomical localization of phase synchronized neuronal populations in the human brain with magnetoencephalography. We study phase synchronization between the reconstructed current source density (CSD) of different brain areas as well as between the CSD and muscular activity. We asked four subjects to tap their fingers in synchrony with a rhythmic tone, and to continue tapping at the same rate after the tone was switched off. The phase synchronization behavior of brain areas relevant for movement coordination, inner voice, and time estimation changes drastically when the transition to internal pacing occurs, while their averaged amplitudes remain unchanged. Information of this kind cannot be derived with standard neuroimaging techniques like functional magnetic resonance imaging or positron emission tomography.  相似文献   

12.
Information theory is a probabilistic framework that allows the quantification of statistical non-independence between signals of interest. In contrast to other methods used for this purpose, it is model free, i.e., it makes no assumption about the functional form of the statistical dependence or the underlying probability distributions. It thus has the potential to unveil important signal characteristics overlooked by classical data analysis techniques. In this review, we discuss how information theoretic concepts have been applied to the analysis of functional brain imaging data such as functional magnetic resonance imaging and magneto/electroencephalography. We review studies from a number of imaging domains, including the investigation of the brain's functional specialization and integration, neurovascular coupling and multimodal imaging. We demonstrate how information theoretical concepts can be used to answer neurobiological questions and discuss their limitations as well as possible future developments of the framework to advance our understanding of brain function.  相似文献   

13.
Light-assisted ionization accompanying coherent anti-Stokes Raman scattering (CARS) of ultrashort laser pulses in brain tissue is shown to manifest itself in a detectable blueshift of the anti-Stokes signal. This blueshift can serve as an indicator of ionization processes in CARS-based neuroimaging.  相似文献   

14.
In this article we report on acquisition of high resolution 512 × 512 images at 4.1 T using an inversion recovery gradient-echo sequence and a volume head coil developed for high field applications. The T1 values for cerebral white and grey matter were measured to be 834 and 1282 ms, respectively. The partial saturation inversion recovery sequence (Tir 800 ms and TR 2500 ms) provided excellent contrast-to-noise for white to grey matter. Consequently, the images consistently visualized the thalamic nuclear groups, hippocampal fine structure, as well as small draining vessels of the white matter.  相似文献   

15.
朱红毅  沈建其  李军 《物理学报》2004,53(3):947-951
给出一种新的求解真实头模型下脑磁逆问题的搜索方法.通过不同位置的源的相互关系,由上一个搜索源的计算结果通过简单计算,直接得到下一个搜索源的结果,避免了繁琐耗时的边界元积分方法,简化了求解过程,提高了求解速度. 关键词: 脑磁图 逆问题 搜索方法  相似文献   

16.
Rapid prototyping manufacturing methods such as stereo-lithography, fused deposition modelling, enable real parts to be produced very quickly from CAD models but because the parts are produced in materials which are different from the final component, these cannot readily be used for assessing structural integrity. Electronic speckle pattern interferometry (ESPI) enables full-field measurement of surface displacements, both static and dynamic to be made rapidly. This paper proposes the use of these two techniques together to enable the response of parts to static and dynamic loading to be assessed early on in the design process. It should be possible to make a qualitative assessment by observing the form of the deformation or vibration pattern produced and it may also be possible to make quantitative measurement by developing suitable scaling methods. Some initial experiments have been made looking at the vibration of flat plates and further proposed work is outlined.  相似文献   

17.
The definition of objective and effective thresholds in MRI of human brain function is a crucial step in the analysis of paradigm-related activations. This paper introduces a user-independent and robust procedure that calculates statistical parametric maps based on correlation coefficients. Thresholds are introduced as p values and defined with respect to the physiologic noise distribution of the individual maps. Experimental examples from the human visual and motor system rely on dynamic acquisitions of gradient-echo echo-planar images (2.0 T, TR = 2000 ms, 96 × 128 matrix) with blood oxygenation level-dependent contrast. The results demonstrate the disadvantages of thresholding with fixed correlation coefficients. In contrast, taking the individual noise into account allows for a derivation of p values and a reliable identification of highly significant activation centers. An adequate delineation of the spatial extent of activation may be achieved by adding directly neighboring pixels provided their correlation coefficients comply with a second lower p value threshold.  相似文献   

18.
In recent years, more and more emphasis has been placed on the investigation of sex differences in the human brain. Noninvasive neuroimaging techniques represent an essential tool in the effort to better understand the effects of sex on both brain structure and function. In this review, we provide a comprehensive summary of the findings that were collected in human neuroimaging studies in vivo thus far: we explore sexual dimorphism in the human brain at the level of (1) brain structure, in both gray and white matter, observed by voxel-based morphometry (VBM) and diffusion tensor imaging (DTI), respectively; (2) baseline neural activity, studied using resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET); (3) neurochemistry, visualized by means of neuroreceptor ligand PET; and (4) task-related neural activation, investigated using fMRI. Functional MRI findings from the literature are complemented by our own meta-analysis of fMRI studies on sex-specific differences in human emotional processing. Specifically, we used activation likelihood estimation (ALE) to provide a quantitative approach to mapping the consistency of neural networks involved in emotional processing across studies. The presented evidence for sex-specific differences in neural structure and function highlights the importance of modeling sex as a contributing factor in the analysis of brain-related data.  相似文献   

19.
利用(含时)密度泛函理论研究了二甲基胺-二苯甲酮(DMABP)及其氢键二聚物DMABP-MeOH的光物理性质和弛豫动力学过程. 结果表明,在非极性和非质子性溶剂中,DMABP分子的第一和第二激发态跃迁同时具有局域激发和分子内电荷转移的特征;在极性质子性溶剂中,分子间氢键C=O…H-O的形成增加了这两个最低激发态之间的能量差,使DMABP-MeOH的第一激发态具有较强极性的分子内电荷转移特性. 通过计算DMABP和DMABP-MeOH分子的激发态构型弛豫势能曲线研究了激发态动力学弛豫过程. 结果表明,通过扭  相似文献   

20.
In this study, we combined the advantages of a fast multi-slice spiral imaging approach with a multiple gradient-echo sampling scheme at high magnetic field strength to improve quantification of BOLD and inflow effects and to estimate T2* relaxation times in functional brain imaging. Eight echoes are collected with echo time (TE) ranging from 5 to 180 ms. Acquisition time per slice and echo time is 25 ms for a nominal resolution of 4 x 4 x 4 mm3. Evaluation of parameter images during rest and stimulation yields no significant activation on the inflow sensitive spin-density images (rho or I0-maps) whereas clear activation patterns in primary human motor cortex (M1) and supplementary motor area (SMA) are detected on BOLD sensitive T2*-maps. The calculation of relaxation times and rates of the activated areas over all subjects yields an average T2* +/- standard deviation (SD) of 46.1+/-4.5 ms (R2* of 21.8+/-2.2 s(-1)) and an average increase (deltaT2* +/- SD) of 0.93+/-0.47 ms (deltaR2* of -0.4+/-0.14 s(-1)). Our findings demonstrate the usefulness of a multiple gradient echo data acquisition approach in separating various vascular contributions to brain activation in fMRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号