首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

2.
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 °C, the external ambient temperature was fixed at 35 °C and on the semitransparent wall the direct normal solar irradiation of 750 W/m2 was considered constant. The Rayleigh number was varied in the range of 109 ? Ra ? 1012 by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.  相似文献   

3.
The problem of the long established thermal stratification discrepancy between numerical and experimental results is investigated in three companion articles. The Part I article establishes reference solutions by means of three-dimensional (3D) spectral direct numerical simulations of a buoyancy-driven flow (RaH = 1.5 × 109). Two configurations of differentially heated air-filled cavity are considered: an idealized cavity (perfectly adiabatic cavity, PAC) and an Intermediate Realistic Cavity (IRC) making use of experimentally measured temperature distributions (Salat, 2004) on its top and bottom walls. The IRC flow structure as well as its associated rms fluctuations correspond to the experimentally observed flow dynamics. However both configurations keep resulting in a core thermal stratification value equal to 1.0 whereas experiments lead to a stratification of about 0.5. It is proved that this stratification paradox is neither related to three-dimensional effects nor to the experimental thermal distributions applied on the horizontal walls. Resolving this stratification discrepancy is the subject of the parts II and III articles (Sergent et al., 2013, Xin et al., 2012).  相似文献   

4.
The variation of natural convection heat transfer from an isothermal horizontal cylinder confined between two adiabatic walls of constant height is investigated by Mach-Zehnder interferometry technique. This paper focuses on the chimney effect due to the vertical position changes of cylinder (Y) located between two walls with a constant distance of W measuring 1.5 cylinder diameter. The cylinder’s local and average Nusselt numbers are determined for ratio of vertical position to its diameter ranging from Y/D = (0 to 10), and the Rayleigh number ranging from 3.5 × 103 to 1.4 × 104. There is an optimum distance between the walls in which the Nusselt number is maximum. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of vertical position to cylinder diameter and the Rayleigh number. The experimental data shows that there is an optimum vertical position for the cylinder at which the Nusselt number has a maximum value at each Rayleigh number. This optimal vertical position is derived from the correlation and is presented by an equation. The value of the optimum vertical position increases as the Rayleigh number increases.  相似文献   

5.
The present study concerns an air-filled differentially heated cavity of 1 m × 0.32 m × 1 m (width × depth × height) subject to a temperature difference of 15 K and is motivated by the need to understand the persistent discrepancy observed between numerical and experimental results on thermal stratification in the cavity core. An improved experiment with enhanced metrology was set up and experimental data have been obtained along with the characteristics of the surfaces and materials used. Experimental temperature distributions on the passive walls have been introduced in numerical simulations in order to provide a faithful prediction of experimental data. By means of DNS using spectral methods, heat conduction in the insulating material is first coupled with natural convection in the cavity. As heat conduction influences only the temperature distribution on the top and bottom surfaces and in the near wall regions, surface radiation is added to the coupling of natural convection with heat conduction. The temperature distribution in the cavity is strongly affected by the polycarbonate front and rear walls of the cavity, which are almost black surfaces for low temperature radiation, and also other low emissivity walls. The thermal stratification is considerably weakened by surface radiation. Good agreement between numerical simulations and experiments is observed on both time-averaged fields and turbulent statistics. Treating the full conduction–convection–radiation coupling allowed to confirm that experimental wall temperatures resulted from the coupled phenomena and this is another way to predict correctly the experimental results in the cavity.  相似文献   

6.
We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 μm and mass of a few 10?8 g were irradiated with up to 7 J of laser energy focused to intensities of several 1019 W/cm2. The conversion of laser energy to K-alpha radiation is measured, and high-resolution spectra that allow observation of line shifts are observed, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.  相似文献   

7.
The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 1016 W cm?2 at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5–8 eV with electron density in the range 1021–1022 cm?3. These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication.  相似文献   

8.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

9.
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (k+ = 10–20) and relative roughness spacing (s+/k+ = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift y+ (∼10–15), which, interestingly, corresponds to the relative roughness k+ = 10.  相似文献   

10.
Surface responses induced by point load or uniform traction moving steadily with subsonic speed on an anisotropic half-plane boundary are investigated. It is found that the effects of the material constant on surface displacements are through matrices L?1(v) and S(v)L?1(v), while those on surface stress components are through matrices Ω(v) and Γ(v). Explicit expressions for the elements of these four matrices are expressed in terms of elastic stiffness for general anisotropic materials. The special cases of monoclinic materials with symmetry plane at x1 = 0, x2 = 0 and x3 = 0, and the case for orthotropic materials are all deduced. Results for isotropic material may be recovered from present results. For monoclinic materials with a plane of symmetry at x3 = 0, two of the elements of matrix Ω(v) are found to be independent of subsonic speed.  相似文献   

11.
12.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of px/k = 8, 16, 32, 64 and 128, where px is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Reθ = 300–1400, and the height of the roughness element was k = 1.5θin, where θin is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8  px/k  128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (px/k  32) based on the profiles of the Reynolds stresses, whereas those are not for px/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for px/k = 8 and 16. For px/k  32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for px/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region.  相似文献   

13.
We report on soft X-ray scattering experiments on cryogenic hydrogen and simple metal samples. As a source of intense, ultrashort soft X-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 150 μJ and durations 15–50 fs provide interaction with the sample leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft X-ray inelastic scattering from near-solid density hydrogen plasmas at few electron volt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft X-ray excitation of few electron volt solid-density plasmas in bulk metal samples could be studied by recording soft X-ray line and continuum emission integrated over emission times from fs to ns.  相似文献   

14.
The quantum-mechanical average-atom model is reviewed and applied to determine scattering phase shifts, mean-free paths, and relaxation times in warm-dense plasmas. Static conductivities σ are based on an average-atom version of the Ziman formula. Applying linear response to the average-atom model leads to an average-atom version of the Kubo–Greenwood formula for the frequency-dependent conductivity σ(ω). The free–free contribution to σ(ω) is found to diverge as 1/ω2 at low frequencies; however, considering effects of multiple scattering leads to a modified version of σ(ω) that is finite and reduces to the Ziman formula at ω = 0. The resulting average-atom version of the Kubo–Greenwood formula satisfies the conductivity sum rule. The dielectric function ε(ω) and the complex index of refraction n(ω) + (ω) are inferred from σ(ω) using dispersion relations. Applications to anomalous dispersion in laser-produced plasmas are discussed.  相似文献   

15.
Solar cracking of methane is considered to be an attractive option due to its CO2 free hydrogen production process. Carbon particle deposition on the reactor window, walls and exit is a major obstacle to achieve continuous operation of methane cracking solar reactors. As a solution to this problem a novel “aero-shielded solar cyclone reactor” was created. In this present study the prediction of particle deposition at various locations for the aero-shielded reactor is numerically investigated by a Lagrangian particle dispersion model. A detailed three dimensional computational fluid dynamic (CFD) analysis for carbon deposition at the reactor window, walls and exit is presented using a Discrete Phase Model (DPM). The flow field is based on a RNG k–ε model and species transport with methane as the main flow and argon/ hydrogen as window and wall screening fluid. Flow behavior and particle deposition have been observed with the variation of main flow rates from 10–20 L/min and with carbon particle mass flow rate of 7 × 10−6 and 1.75 × 10−5 kg/s. In this study the window and wall screening flow rates have been considered to be 1 L/min and 10 L/min by employing either argon or hydrogen. Also, to study the effect of particle size simulations have also been carried out (i) with a variation of particle diameter with a size distribution of 0.5–234 μm and (ii) by taking 40 μm mono sized particles which is the mean value for the considered size distribution. Results show that by appropriately selecting the above parameters, the concept of the aero-shielded reactor can be an attractive option to resolve the problem of carbon deposition at the window, walls and exit of the reactor.  相似文献   

16.
For axi-symmetrically notched tension bars [Dyson, B.F., Loveday, M.S., 1981, Creep Fracture in Nimonic 80A under Tri-axial Tensile Stressing, In: Ponter A.R.S., Hayhurst, D.R. (Eds.), Creep in Structures, Springer-Verlag, Berlin, pp. 406–421] show two types of damage propagation are shown: for low stress, failure propagates from the outside notch surface to the centre-line; and for high stress, failure propagates from the centre-line to the outside notch surface. The objectives of the paper are to: identify the physics of the processes controlling global failure modes; and, describe the global behaviour using physics-based constitutive equations.Two sets of constitutive equations are used to model the softening which takes place in tertiary creep of Nimonic 80A at 750 °C. Softening by multiplication of mobile dislocations is firstly combined, for low stress, with softening due to nucleation controlled creep constrained cavity growth; and secondly combined, for high stress, with softening due to continuum void growth. The Continuum Damage Mechanics, CDM, Finite Element Solver DAMAGE XX has been used to study notch creep fracture. Low stress notch behaviour is accurately predicted provided that the constitutive equations take account of the effect of stress level on creep ductility. High stress notch behaviour is accurately predicted from a normalized inverse cavity spacing d/2? = 6, and an initial normalized cavity radius rhi/? = 3.16 × 10?3, where 2? is the cavity spacing, and d is the grain size; however, the constants in the strain rate equation required recalibration against high stress notch data. A void nucleation mechanism is postulated for high stress behaviour which involves decohesion where slip bands intersect second phase grain boundary particles. Both equation sets accurately predict experimentally observed global failure modes.  相似文献   

17.
Over the last several years we have predicted and observed plasmas with an index of refraction greater than 1 in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main calculational tool has been the average-atom code. We have recently observed C2+ plasmas with an index of refraction greater than 1 at a wavelength of 46.9 nm (26.44 eV). In this paper we compare the average-atom method, AVATOMKG, against two more detailed methods, OPAL and CAK, for calculating the index of refraction for the carbon plasmas and discuss the different approximations used. We present experimental measurements of carbon plasmas that display this anomalous dispersion phenomenon. It is shown that the average-atom calculation is a good approximation when the strongest lines dominate the dispersion. However, when weaker lines make a significant contribution, the more detailed calculations such as OPAL and CAK are essential. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. With the advent of tunable X-ray lasers the frequency-dependent interferometer measurements of the index of refraction may enable us to determine the absorption coefficients and lineshapes and make detailed comparisons against our atomic physics codes.  相似文献   

18.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

19.
We present the effect of a magnetic field on three-dimensional fluid flow and heat transfer during solidification from a melt in a cubic enclosure. The walls of the enclosure are considered perfectly electrically conducting and the magnetic field is applied separately in three directions. The finite-volume method with enthalpy formulation is used to solve the mathematical model in the solid and liquid phases. The results obtained by our computer code are compared with the numerical and experimental data found in the literature. For Gr = 5 × 105 and Ha = 0, 25, 50, 75, and 100 (where Gr and Ha are the Grashof and Hartmann numbers, respectively), the effects of magnetic field on flow and thermal fields, and on solid/liquid interface shape are presented and discussed. The interface is localized with and without magnetic field. The results show a strong dependence between the interface shape and the intensity and orientation of magnetic field. When the magnetic field is applied along the X-direction, the magnetic stability diagrams (VmaxHa) and (NuavgHa) show the strongest stabilization of the flow field and heat transfer.  相似文献   

20.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号