首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 7 毫秒
1.
The effects of cobalt addition (0.5 and 1 wt.%) on densification and ionic conductivity of Ce0.9Sm0.1O1.95 (10SDC) and Ce0.9Sm0.075Y0.025O1.95 (2.5Y-SDC) have been studied. X-ray diffraction (XRD) showed that Co had changed to Co3O4 and Co3O4 + CoO after firing at 900 °C and 1300 °C respectively. The addition of Co promoted densification to occur at lower temperatures with a more uniform grain growth and greatly improved both grain boundary and bulk conductivity for 10SDC. Significant improvement of grain boundary for the 2.5Y-SDC samples was obtained, even at 1300 °C sintering, while bulk conductivity was slightly improved. Rapid grain growth along with improvement of ionic conductivity was observed when the samples were sintered further at higher temperature. Superior ionic conductivity of the 2.5Y-SDC samples with Co addition to that of the bare 10SDC suggested the potential use of Co as the co-dopant in this system to reduce the content of costly rare earth usage.  相似文献   

2.
Samarium-doped Ceria powders for solid electrolyte ceramics were synthesized by a combustion process. Cerium nitrate and samarium nitrate were used as the starting materials, and glycine was used as fuel. Decomposition of unburned nitrogen and carbon residues was investigated by simultaneous thermogravimetry analysis and differential thermal analysis experiments. The X-ray diffraction results showed that the single-phase fluorite structure forms at a relatively low calcination temperature of 800 °C. X-rays patterns of the SDC powders revealed that the crystallite size of the powders increases with increasing calcination temperature. The sintering behavior results showed that more than 96% of the relative density is obtained for powders sintered at 1,100 °C for 8 h. The alternating current impedance spectroscopy results showed that the SDC15 sample sintered at 1,100 °C has ionic conductivity of 0.015 Scm−1at 650 °C in air. The present work results have indicated that glycine–nitrate route is a relatively low-temperature preparation technique to synthesize SDC powders with a high sinterability and a good ionic conductivity. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

3.
Ionic conductivity and chemical diffusion coefficient have been studied for superionic polycrystalline Cu1.75Se copper selenide within the temperature interval 300–500 K. An increase in ionic conductivity with an grain size increase is observed. In our opinion, this fact is caused by lower activation energy for the bulk diffusion than that for the grain boundary diffusion.  相似文献   

4.
The effect of a small addition of MoO3 on the microstructure and ionic conductivity of Nd0.2Ce0.8O1.9 (NDC), La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM) and Nd0.2Ce0.8O1.9-La0.8Sr0.2Ga0.8Mg0.2O2.8 (NDC-LSGM) has been investigated. The microstructure and electrical properties of the samples were characterized by X-ray diffraction, field-emission scanning electron microscopy and electrochemical impedance spectroscopy. The results show that MoO3 doping can obviously increase the densification and grain sizes, and decrease the grain and grain boundary resistances of the NDC, LSGM and NDC-LSGM electrolytes. It expands the oxygen ion channels and reduces the total conductance activation energy of the system. The total conductivities of MoO3-doped NDC and NDC-LSGM samples are 1.56 and 2.10 times higher than that of the undoped NDC system at 450°C. The total conductivity of LSGM-Mo is 1.46 times higher than that of LSGM at 450°C. These finding suggest that MoO3 is considered to be an effective sintering aid that optimizes the electrical properties of NDC, LSGM and NDC-LSGM electrolytes.  相似文献   

5.
The Nasicon compounds with the composition LiTi2−xSnx(PO4)3 (x=0-1.8) were synthesised by the solid state reaction. Their structures were determined from X-ray powder diffraction using Rietveld analysis. All the compositions present the space group R-3c. The refinements show that the Ti and Sn cations are statistically distributed over the same position while the Li ones are exclusively located on the M1 site. The lattice constants a and c exhibit linear variation over the whole composition range. The bond lengths are in accordance with those of other Nasicon structures. The SEM micrographs of the samples show relative porous microstructures. The ionic conductivity is about 10−4-10−5 S cm−1; for the activation energy, a typical value of 0.32 eV is obtained for x=0.6 composition whereas significant deviation from linearity in the temperature dependence of the dc conductivity, is observed for the Sn-rich ones. This tendency is discussed along with the structural features.  相似文献   

6.
A new layered perovskite compound, Ag2La2Ti3O10, was synthesized by an ion-exchange reaction of M2La2Ti3O10 (M = Na,K) with a AgNO3 molten salt. The crystal structure and the ionic conductivity of the ion-exchanged compound were investigated. The ionic conductivities attributed to the interlayer silver ions were observed at high temperatures. The ionic conductivity of Ag2La2Ti3O10 was much higher than that of Na2La2Ti3O10, while the interlayer sodium ions in Na2La2Ti3O10 and silver ions in Ag2La2Ti3O10 have almost the same rock-salt type coordination. The higher conductivity of Ag2La2Ti3O10 is probably due to the higher polarizability of silver ions.  相似文献   

7.
A solid polymer electrolyte (SPE) is synthesized by solution casting technique. The SPE uses poly(ethylene oxide) PEO as a host matrix doped with lithium triflate (LiCF3SO3), ethylene carbonate (EC) as plasticizer and nano alumina (Al2O3) as filler. The polymer electrolytes are characterized by Impedance Spectroscopy (IS) to determine the composition of the additive which gives the highest conductivity for each system. At room temperature, the highest conductivity is obtained for the composition PEO-LiCF3SO3-EC-15%Al2O3 with a value of 5.07 10− 4 S/cm. The ionic conductivity of the polymer electrolytes increases with temperature and obeys the Arrhenius law. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies indicate that the conductivity increase is due to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show the changes morphology of solid polymer electrolyte.  相似文献   

8.
ABSTRACT

We review recent progress in studying structural properties of liquids using X-ray absorption spectroscopy coupled with the Paris-Edinburgh press at third-generation synchrotron facilities. This experimental method allows for detecting subtle changes in atomic arrangements of melts over a wide pressure–temperature range. It has been also employed to monitor variations of the local coordination environment of diluted species contained in glasses, liquids and crystalline phases as a function of the pressure and temperature. Such information is of great importance for gaining deeper insights into the physico-chemical properties of liquids at extreme condition, including the understanding of such phenomena as liquid–liquid phase transitions, viscosity drops and various transport properties of geological melts. Here, we describe the experimental approach and discuss its potential in structural characterization on selected scientific highlights. Finally, the current ongoing instrumental developments and future scientific opportunities are discussed.  相似文献   

9.
The electrical conductivity of the LaY1−xInxO3 (x=0.0–0.7) system has been studied from the viewpoint of crystal chemistry. The high temperature form of LaYO3 (x=0.0) was ascertained to be the Sm2O3-type (B-type rare earth) structure, not perovskite-type one. The X-ray diffraction (XRD) experiments revealed that the samples with x=0.05 and 0.10 were the mixed phase of Sm2O3-type and perovskite-type structure, and changed to perovskite phase in the range of x0.20. From oxygen partial pressure dependence of the electrical conductivity, it was found that both the Sm2O3-type and the perovskite-type single phases showed hole conduction, but the mixed phase did oxide-ion one. The electrical conductivity of the LaY1−xInxO3 (x=0.0–0.7) system increased with increasing x, and showed the maximum value in the range of x=0.05–0.10, and then decreased with increasing x. The occurrence of oxide-ion conduction was discussed from the viewpoint of lattice distortion in the mixed phase.  相似文献   

10.
A theoretical method for studying the inter-relation between electronic and molecular structure has been proposed based on the complete energy matrices for a d3 configuration ion in a tetragonal ligand-field. By means of this method, the local structure for Cr3+ ion doped in oxides TiO2 (anatase) and MgO has been determined. The calculated results indicate that the local structure of the (CrO6)9− cluster in TiO2:Cr3+ and MgO:Cr3+ systems exists as a compressed distortion relative to the regular octahedron. Meanwhile, the dependence of the EPR zero-field splitting parameter D on the local structure parameter ΔRR=R1R2) has been revealed. In addition, the relation between the EPR g-factors (g,gg) and the orbit reduction factor k has been discussed for the two systems, suggesting that the orbit reduction factor k is very important to understand the EPR g-factors.  相似文献   

11.
The local structure of the Cu2+ centers in alkali lead tetraborate glasses was theoretically studied based on the optical spectra data and high-order perturbation formulas of the spin Hamiltonian parameters (electron paramagnetic resonance g factors g, g and hyperfine structure constants A, A) for a 3d9 ion in a tetragonally elongated octahedron. In these formulas, the relative axial elongation of the ligand O2? octahedron around the Cu2+ due to the Jahn–Teller effect is taken into account by considering the contributions to the g factors from the tetragonal distortion which is characterized by the tetragonal crystal-field parameters Ds and Dt. From the calculations, the ligand O2? octahedral around Cu2+ is determined to suffer about 19.2% relative elongation along the C4 axis of the alkali lead tetraborate glass system, and a negative sign for A and a positive sign for A for these Cu2+ centers are suggested in the discussion.  相似文献   

12.
A comparative local structure study of pnictide superconductors Ca0.82La0.18FeAs2 (112-type, Tc∼ 40 K) and Ba0.64K0.36Fe2As2 (122-type, Tc∼ 37 K), using room temperature x-ray total scattering measurements is reported. The Fe–As superconducting active layer is found to be globally similar in both the systems consisting of edge-sharing FeAs4/4 tetrahedra as in all the iron-pnictide superconductors discovered so far. Although optimally superconducting, the active layer in these compounds is found to sustain a large local inhomogeneity. These results thus imply that a nanoscopic manipulation of the Fe–As active layer, rather than its isotropic structural tuning, is the key parameter to control the superconducting properties of the iron-based systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号