首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electroanalysis》2006,18(16):1627-1630
The surface of a gold (Au) electrode was coated with layer‐by‐layer (LbL) thin films composed of poly(vinyl sulfate) (PVS) and different type of poly(amine)s including poly(allylamine) (PAH), poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) and redox properties of ferricyanide ion ([Fe(CN)6]3?) on the LbL film‐coated Au electrodes were studied. The LbL film‐coated electrodes exhibited redox response to [Fe(CN)6]3? ion when the outermost surface of the LbL film was covered with the cationic poly(amine)s while virtually no response was observed on the LbL film‐coated electrodes whose outermost surface was covered with PVS due to an electrostatic repulsion between [Fe(CN)6]3? ion and the negatively‐charged PVS layer. The redox properties of [Fe(CN)6]3? ion on the LbL film‐coated electrodes significantly depended on the type of polycationic materials in the LbL film. The LbL film‐coated electrodes which had been immersed in the [Fe(CN)6]3? solution for 15 min exhibited redox response even in a [Fe(CN)6]3? ion‐free buffer solution, suggesting that [Fe(CN)6]3? ion is confined in the films. In the buffer solution, redox peaks were observed between +0.1 and 0.4 V depending on the type of polycations in the film. Thus, [Fe(CN)6]3? ion can be confined in the film and the redox potential is polycation‐dependent.  相似文献   

2.
Baozhen Wang 《Talanta》2007,72(2):415-418
Multilayer thin films composed of poly(allylamine hydrochloride) (PAH) and carboxymethyl cellulose (CMC) have been prepared on the surface of a gold (Au) disk electrode by a layer-by-layer deposition of PAH and CMC and ferricyanide ions ([Fe(CN)6]3−) were confined in the film. [Fe(CN)6]3− ions can be successfully confined in the films from weakly acidic or neutral [Fe(CN)6]3− solutions, while, in basic solution, [Fe(CN)6]3− ion was not confined. The [Fe(CN)6]3− ion-confined Au electrode showed clear redox peaks in the cyclic voltammogram around 0.35 V versus Ag/AgCl. The amounts of [Fe(CN)6]3− ions confined in the films depended on the thickness of the films or the number of layers in the LbL films. The [Fe(CN)6]3− ion-confined Au electrode was used for electrocatalytic determination of ascorbic acid in the concentration range of 1-50 mM.  相似文献   

3.
Polynuclear mixed‐valent films of cobalt oxide and cobalt hexacyanoferrate (CoOCoHCF) have been deposited on electrode surfaces from a solution of Co2+ and Fe(CN)63? ions by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance measurements demonstrate the steady growth of modified film. The effect of type of monovalent cations as well as acidity of the supporting electrolyte on film growth and redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The hybrid film electrodes showed electrocatalytic activity toward oxidation of NADH, hydrazine and hydroxylamine. The feasibility of using our modified electrodes for analytical application was also explored.  相似文献   

4.
《Electroanalysis》2005,17(4):319-326
Thallium hexacyanoferrate films have been prepared from various aqueous electrolyte solutions using consecutive cyclic voltammetry. The cyclic voltammograms recorded the direct deposition of thallium hexacyanoferrate films from the mixing of Tl3+ and [Fe(CN)6]3? ions from solutions of seven cations: Li+, Na+, K+, Rb+, Cs+, H+, and Tl+. An electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry were used to study the in situ growth of the thallium hexacyanoferrate films. The thallium hexacyanoferrate film shows a single redox couple with a formal potential between +0.6 V and +1.2 V, and shows a cation effect (H+, Li+, Na+, K+, Rb+, Cs+, and Tl+). A mixed film and a two‐layered modified electrodes composed of a thallium hexacyanoferrate film with cobalt(II) hexacyanoferrate film were prepared.  相似文献   

5.
Novel films consist of multi-walled carbon nanotubes (MWCNT) were fabricated by means of catalytic chemical vapor deposition (CVD) technique with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene (FeCp2) as catalyst. The electrochemical and thermodynamic behavior of the ferrocyanide/ferricyanide, [Fe(CN)6]3−/4− redox couple on synthesized MWCNT-based films was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques at T = (278.15, 283.15, 293.15, and 303.15) K. The redox couple [Fe(CN)6]3−/4− behaves quasi-reversibly on fabricated MWCNT-based films and its reversibility is enhanced upon increasing temperature. Namely, the findings establish that with the rise in temperature the barrier for interfacial electron transfer decreases, leading, consequently, to an enhancement of the kinetics of the charge transfer process. According to thermodynamics the equilibrium of the redox process is shifted towards the formation of [Fe(CN)6]3− at elevated temperatures.  相似文献   

6.
The potentiometric response of electrodes coated with polypyrrole or poly(N-methylpyrrole) films with different doping anions was studied in solutions containing the redox couples: Fe(CN)63−/4−, Ru(NH3)63+/2+ and Fe(Ill)/Fe(II). The stable potential measured with the electrodes was the potential of the redox couple. The response time was instant for polypyrrole doped with dodecylsulphate ions, PPy(DS) and slow for the polymers doped with mobile anions. On the basis of electrochemical measurements and chemical analysis by EDAX spectroscopy it was found that with the PPy(DS) electrode the potentiometric response was of the ‘metallic’ type, with no change in the oxidation state of the bulk polymer. With the other polymer systems studied reduction or oxidation of the polymer bulk took place when it was in contact with a redox couple in the solution.  相似文献   

7.
An electrochemical study of Au electrodes electrografted with azobenzene (AB), Fast Garnet GBC (GBC) and Fast Black K (FBK) diazonium compounds is presented. Electrochemical quartz crystal microbalance, ellipsometry and atomic force microscopy investigations reveal the formation of multilayer films. The elemental composition of the aryl layers is examined by X‐ray photoelectron spectroscopy. The electrochemical measurements reveal a quasi‐reversible voltammogram of the Fe(CN)63?/4? redox couple on bare Au and a sigmoidal shape for the GBC‐ and FBK‐modified Au electrodes, thus demonstrating that electron transfer is blocked due to the surface modification. The electrografted AB layer results in strongest inhibition of the Fe(CN)63?/4? response compared with other aryl layers. The same tendencies are observed for oxygen reduction; however, the blocking effect is not as strong as in the Fe(CN)63?/4? redox system. The electrochemical impedance spectroscopy measurements allowed the calculation of low charge‐transfer rates to the Fe(CN)63? probe for the GBC‐ and FBK‐modified Au electrodes in relation to bare Au. From these measurements it can be concluded that the FBK film is less compact or presents more pinholes than the electrografted GBC layer.  相似文献   

8.
《Electroanalysis》2004,16(20):1704-1710
Titanium carbide (TiC) polycrystalline thin films, obtained by a hybrid chemical vapor deposition/powder flowing technique, were characterized and used to assemble working electrodes. The potential window and the electrochemistry of standard redox couples ([Ru(NH3)6]3+, [Fe(CN)6]3?) have been investigated in cyclic voltammetry, demonstrating a behavior similar to glassy carbon electrodes. The quinone (Q)/hydroquinone(H2Q) redox couple presented an interesting quasireversible behavior(Ep=0.07 mV) , confirmed also for other quinones.  相似文献   

9.
The effect of Ca2+ on the electron transfer of Fe(CN)63−/4− couple at Pt supported lecithin (PC)/cholesterol (CH) bilayer lipid membrane (BLM) electrode has been studied by voltammetry and ac impedance spectroscopy. Experimental results suggest that the interaction of Ca2+ with the BLM can open some kind of channel for Fe(CN)63/4 ions, allowing increased access of the redox couple to the electrode surface. This phenomenon may be related to the Ca2+ regulation or activation effect of ion channel in some biomembranes.  相似文献   

10.
Arylmethyl films have been grafted to glassy carbon surfaces and to pyrolyzed photoresist films (PPFs) by electrochemical oxidation of 1-naphthylmethylcarboxylate and 4-methoxybenzylcarboxylate. Atomic force microscopy (AFM) and electrochemistry were used to characterize the as-prepared films and to monitor changes induced by post-preparation treatments. Film thickness was measured by depth profiling using an AFM tip to remove film from the PPF surface. Surface coverage of electroactive modifiers was estimated from cyclic voltammetry, and monitoring the response of a solution-based redox probe at grafted surfaces gave a qualitative indication of changes in film properties. For preparation of the films, the maximum film thickness increased with the potential applied during grafting, and all films were of multilayer thickness. The apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple was very low at as-prepared films. After film-grafted electrodes were transferred to pure acetonitrile-electrolyte solution and subjected to negative potential excursions, the response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple changed and was consistent with faster electron-transfer kinetics, the film thickness decreased and the surface roughness increased substantially. Applying a positive potential to the treated film reversed changes in film thickness, but the voltammetric response of the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained kinetically fast. After as-prepared films were subjected to positive applied potentials in acetonitrile-electrolyte solution, the apparent rate of electron transfer for the Fe(CN)(6)3-/Fe(CN)(6)4- couple remained very slow and the measured film thickness was the same or greater than that before treatment at positive potentials. Mechanisms are considered to explain the observed effects of applied potential on film characteristics.  相似文献   

11.
A newly modified electrode was prepared by mechanical immobilization of copper hexacyanoferrate (CuHCF) on a graphite electrode. The modified electrode was characterized by cyclic voltammetric experiments. The effect of different background electrolytes, pHs and scan rates on the electrochemical behaviour of the electrode has been evaluated. In NH4Cl two reversible redox peaks were observed. The first redox peak corresponding to Cu+/Cu2+ is observed only in this medium. The second redox peak corresponds to the Fe(CN)6 4–/Fe(CN)6 3– couple. Both anodic peaks were used for catalytic oxidation of ascorbic acid. As the anodic current for catalytic oxidation was proportional to the amount of ascorbic acid, an analytical method was developed for the determination of ascorbic acid in commercial samples. Received: 26 May 1998 / Revised: 15 March 1999 / Accepted: 20 March 1999  相似文献   

12.
A newly modified electrode was prepared by mechanical immobilization of copper hexacyanoferrate (CuHCF) on a graphite electrode. The modified electrode was characterized by cyclic voltammetric experiments. The effect of different background electrolytes, pHs and scan rates on the electrochemical behaviour of the electrode has been evaluated. In NH4Cl two reversible redox peaks were observed. The first redox peak corresponding to Cu+/Cu2+ is observed only in this medium. The second redox peak corresponds to the Fe(CN)6 4–/Fe(CN)6 3– couple. Both anodic peaks were used for catalytic oxidation of ascorbic acid. As the anodic current for catalytic oxidation was proportional to the amount of ascorbic acid, an analytical method was developed for the determination of ascorbic acid in commercial samples.  相似文献   

13.
FeOOH deposition films were formed on gold electrodes by polarization in an electrolyte containing Fe2+. The time dependence of the formation current suggests a diffusion-controlled formation process. The oxidation of Fe(CN)64? at FeOOH films shows no Tafel-like behavior. It is assumed that the Fe2+ to form the film, as well as the Fe(CN)64? to be oxidized, have to diffuse through an adherent, strongly hydrous layer of Fe(OH)3 to the surface of FeOOH.  相似文献   

14.
This work reports a comprehensive electroanalytical study of carbon nanohorns (CNHs) in electrochemical applications. Compared to other types of carbons, the bare CNHs electrode exhibited higher peak current densities and lowest anodic peak‐to‐cathodic peak separation of less than 50 mV for the [Fe(CN)4?]6/[Fe(CN)3?]6 redox couple. Furthermore, CNHs exhibited excellent electrocatalyst supporting properties for porous Pt film towards methanol oxidation reaction reaching a peak current density of 127 mA cm?2 or peak current mass activity 184 mA mgPt?1. Regarding oxygen reduction reaction, an onset potential as positive as 0. 77 V vs. Ag/AgCl was achieved with CNHs/porous Pt film.  相似文献   

15.
Electrochemically active hybrid coatings based on cationic films, didodecyldimethylammonium bromide (DDAB), and poly(diallyldimethylammonium chloride) (PDDAC) are prepared on electrode surface by cycling the film-covered electrode repetitively in a pH 6.5 solution containing Fe(CN)6 3− and Ru(CN)6 4− anions. Modified electrodes exhibited stable and reversible voltammetric responses corresponding to characteristics of Fe(CN)6 3−/4− and Ru(CN)6 4−/3− redox couples. The cyclic voltammetric features of hybrid coatings resemble that of electron transfer process of surface-confined redox couple. Electrochemical quartz crystal microbalance results show that more amounts of electroactive anionic complexes partitioned into DDAB coating than those doped into PDDAC coating from the same doping solution. Peak potentials of hybrid film-bound redox couples showed a negative shift compared to those at bare electrode and this shift was more pronounced in the case of DDAB. Finally, the advantages of hybrid coatings in electrocatalysis are demonstrated with sulfur oxoanions.  相似文献   

16.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

17.
The effect of components of the redox pair K3[Fe(CN)6]/K4[Fe(CN)6] on the dynamics of formation of octanethiol (OT) monolayers from aqueous thiol-containing solutions of 0.1 М NaClO4 is studied by cyclic voltammetry (CVA). The formation of OT monolayers is shown to depend on the presence of ions of hexacyanoferrate(II)/(III) in solution. Being added to solution, the components of the [Fe(CN)6]3–/4– redox pair sharply increase the time of formation of the insulating monolayer OT films and make them less stable. The destabilizing and inhibiting action of [Fe(CN)6]3–/4– ions becomes stronger as their concentration in solution increases. The adsorption activity of individual components of the redox pair is assessed. The strong and approximately equal adsorption activity of ions [Fe(CN)6]3– and [Fe(CN)6]4– on gold in the presence of octanethiol is observed. At the same time, OT and the hexacyanoferrate(II)/(III) ions can be placed in the following row: OT > [Fe(CN)6]3– ≈ [Fe(CN)6]4–. Recommendations are given on how to eliminate the interfering action of the K3[Fe(CN)6]/K4[Fe(CN)6] redox-pair ions when studying the insulating properties of thiol monolayers on gold.  相似文献   

18.
Composite materials of Prussian blue–polypyrrole (PB/PPy) on the surface of indium tin oxide (ITO)-coated glasses were obtained via one-step chemical (redox) and one-stage electrochemical procedures in mixed solution of iron (III), hexacyanoferrate (III), and pyrrole with various concentration ratios of components in nitrate supporting electrolyte. Electrochemical stability of composite films depends on the amount of Py in synthetic solution, whereas color contrast coefficient values depend on the type of synthetic procedure. PB/PPy film electrochromic response (tested by spectroelectrochemical potentiodynamic measurements) was compared with response of both pure PB and pure PPy films. It was shown that degradation of composite films occurs due to PB component instability in Prussian white form. The highest value of color contrast coefficient and great electrochemical stability were revealed for composite films obtained via redox-synthesis procedure from solution with 0.1 mM [Fe3+ + Fe(CN)6 3?] and 1.0 mM Ру (PB/PPy-Ch-1:1:10 system).  相似文献   

19.
The cathodic reduction of oxygen in 1 mol dm−3 sodium hydroxide solutions has been investigated at several types of titanium oxide cathodes. Layers of TiO2 were prepared on titanium by spraying and thermal decomposition of solutions of titanium n-butoxide in 2-propanol and titanium tetrachloride in methanol+water and also by anodization; the reduction was also studied at Ebonex®, a conducting ceramic consisting mainly of Ti5O9. In all cases, the reduction of oxygen occurs largely by a 4e reaction to water and the reaction occurs at potentials close to −1.0 V vs. SCE. Cyclic voltammetry in the absence of oxygen shows that, at these potentials, the surfaces undergo reduction and the electrochemistry of the Fe(CN)64− /Fe(CN)63− couple has been used to probe further the properties of the TiO2 surfaces.  相似文献   

20.
Polyelectrolyte multilayer thin films were prepared by an alternate deposition of poly(allylamine hydrochloride) (PAH) and anionic polysaccharides {carboxymethylcellulose (CMC) and alginic acid (AGA)} on the surface of a gold (Au) disk electrode, and the binding of ferricyanide [Fe(CN)(6)](3)(-) and hexaammine ruthenium ions [Ru(NH(3))(6)](3+) to the films was evaluated. Poly(acrylic acid) (PAA) was also employed as a reference polyanion bearing carboxylate side chains. A quartz-crystal microbalance study showed that PAH-CMC and PAH-AGA multilayer films grow exponentially as the number of depositions increases. The thicknesses of five bilayers of (PAH-CMC)(5) and (PAH-AGA)(5) films were estimated to be 150 +/- 20 and 90 +/- 15 nm, respectively, in the dry state. The PAH/polysaccharide multilayer film-coated Au electrodes exhibited a redox response to the [Fe(CN)(6)](3)(-) ion dissolved in solution, irrespective of the sign of the surface charge of the film, suggesting the high permeability of the films to the [Fe(CN)(6)](3)(-) ion. In contrast, the PAH-PAA film-coated Au electrodes exhibited a redox response only when the outermost surface of the film was covered with a positively charged PAH layer. However, the permeation of the [Ru(NH(3))(6)](3+) cation was severely suppressed for all of the multilayer films. It was possible to confine the [Fe(CN)(6)](3)(-) ion in the films by immersing the film-coated electrodes in a 1 mM [Fe(CN)(6)](3)(-) solution for 15 min. Thus, the [Fe(CN)(6)](3)(-)-confined electrodes exhibited a cyclic voltammetric response in the [Fe(CN)(6)](3)(-) ion-free buffer solution. The loading of the [Fe(CN)(6)](3)(-) ion in the films was higher when the surface charge of the film was positive and increased with increasing film thickness. It was also found that the [Fe(CN)(6)](3)(-) ion confined in the films serves as an electrocatalyst that oxidizes ascorbic acid in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号