首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcohols with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation.  相似文献   

2.
3.
4.
The standard molar enthalpies of formation f H m ° (cr) at the temperature T = 298.15 K were determined using combustion calorimetry for di-tert-butyl-methanol (A), di-tert-butyl-iso-propyl-methanol (B), and di-phenyl-methyl-methanol (C). The standard molar enthalpies of sublimation cr 8 H m ° of these compounds and of di-phenyl-methanol (D) were obtained from the temperature variation of the vapor pressure measured in a flow system. Molar enthalpies of fusion cr 1 H m ° of the compounds A–D and of tri-phenyl-methanol (E) were measured by differential scanning calorimeter (DSC). From these data and data available from the literature, the following standard molar enthalpies of formation in gaseous phase f H m ° (g) for A, (–397.0 ± 1.2); B, (–418.1 ± 2.3); C, (–34.2 ± 1.3); and D, (0.9 ± 2.1) kJ · mol–1 were derived, which correspond to strain enthalpies (H S) of 46.1, 114.7, 8.1, and 5.0 kJ · mol–1, respectively.  相似文献   

5.
An electrostatic bond energy model is formulated to fit the enthalpies of formation and dipole moments of the alkanes and chloroalkanes. In this model, the charge distributions are calculated by an electrostatic approach similar to the "MSE" method, and the enthalpy of formation of a molecule is the sum of the bond energy terms plus the electrostatic energy of the interactions between the charges on all atoms. All parameters of this model are obtained by parameterization. The calculated dipole moments for 13 chloroalkanes and enthalpies of formation for 19 alkanes and non-geminal chloroalkanes agree with the determined values very well. To calculate the enthalpies of formation of geminal chloroalkanes, a correction mainly attributed to the van der Waals interactions in the geminal substituted group, about 24 kJ/mol per pair of geminal chlorine atoms, is introduced.  相似文献   

6.
The interaction potential index IPI(X) of 16 kinds of substituents X (X=OH, SH, NH2, Br, Cl, I, NO2, CN, CHO, COOH, CH3, CH=CH2, C≡CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation ΔfH?(g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the ΔfH?(g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the ΔfH?(g) for the RX.  相似文献   

7.
Electro-induced reduction of redox active esters and N-phthalimidoyl oxalates derived from naturally abundant carboxylic acids and alcohols provides a sustainable and inexpensive approach to radical formation via undivided electrochemical cells. The resulting radicals are trapped by an electron-poor olefin or hydrogen atom source to furnish the Giese reaction or reductive decarboxylation products, respectively. A broad range of carboxylic acid (1°, 2°, and 3°) and alcohol (2° and 3°) derivatives are applicable in this catalyst-free reaction, which tolerated a diverse range of functional groups. This method features simple operation, is a sustainable platform, and has broad application.  相似文献   

8.
We report a C?C bond‐forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOtBu to form α‐alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.  相似文献   

9.
This article describes the synthetic application of ketone-derived oxaziridines as alkyl radical precursors in copper-catalyzed Carbon-Carbon bond formation reactions. Experimental and computational studies indicate a free radical mechanism, where alkyl radicals are efficiently generated via cleavage of a Carbon-Carbon bond of oxaziridines. Acyclic and unstrained cyclic oxaziridines are applicable to the present radical process, allowing for the generation of various alkyl radicals with good functional group compatibility.  相似文献   

10.
王华静  傅尧  刘磊  郭庆祥 《化学学报》2007,65(18):2039-2045
运用6种密度泛函方法(B3LYP, B3P86, B3PW91, PBE1PBE, MPW1B95, MPW1K)对15个含氟有机化合物的碳氟键均裂解离能进行理论计算, 得到的理论值与实验值比较, 发现B3P86方法用于碳氟键均裂解离能的计算相对可靠. 使用验证后的理论方法对含氟杂环有机化合物和卤氟烃中的碳氟键均裂解离能进行了预测和分析, 并进一步讨论了α-取代基效应以及Hammett型取代基效应对碳氟键均裂解离能的影响.  相似文献   

11.
氯化钙/水-醇溶液稀释热   总被引:3,自引:0,他引:3  
电解质溶液稀释热是溶液的重要热性质之一.由它可计算不同浓度下电解质的溶解热、表现相对摩尔焓、溶液中反应热和化合物生成热等.在电解质溶液理论研究中,稀释热也是重要的基础数据.由稀释热可推算溶液中组分的活度系数、渗透系数、相对偏摩尔焓及表观摩尔热容等[1-3].在化工生产中,稀释热是化工过程能量计算不可缺少的数据.电解质水溶液稀释热已有不少研究[2,4].但电解质混合溶剂体系稀释热报导甚少.随着加盐精馏技术、海水淡化技术等研究的进展,急需这方面数据.本文作者已报告了CaCl2/C2H5OH-H2O体系[5]和CaCl2/n-C…  相似文献   

12.
The parabolic model of radical abstraction reactions is used to analyze experimental data on monomolecular hydrogen-atom transfer in the reactionsRC.H(CH2) n CH2R1 RCH2(CH2) n C.HR1(n= 2, 3, 4)RCH(O.)(CH2)2CH2R1 RCH(OH)(CH2)2C.HR1 RCH(OO.)(CH2) n CH2R1 RCH(OOH)(CH2) n C.HR1(n= 1, 2).The activation energies and rate constants that specify each class of these reactions are calculated. Alkyl radical isomerization is characterized by the following activation energies of a thermally neutral reaction depending on the cycle size in the transition state (nis the number of atoms in a cycle): E e , 0(kJ/mol) = 46.6 (n= 6), 59.4 (n= 5), and 57.1 (n= 7). Alkoxy radicals isomerize with E e , 0(kJ/mol) = 53.4 (n= 6), whereas peroxy radicals isomerize with E e , 0(kJ/mol) = 53.2 (n= 6) and E e , 0(kJ/mol) = 54.8 (n= 7). The E e , 0value varies with changes in the cycle size and the strain energy in cycloparaffin C n H2n in the same manner. The activation energies E e , 0for the intra- and intermolecular H-atom abstractions are compared. It is found that E e , 0(isomerization) < E e , 0(R.+ R1H) for alkyl radicals and that E e , 0(isomerization) E e , 0(RO.(RO.) + R1H) for alkoxy and peroxy radicals.  相似文献   

13.
The silyl- and germylzincation of terminal or internal propargylic alcohols by reaction with (Me3Si)3SiH/Et2Zn, [(Me3Si)3Si]2Zn/Et2Zn or Ph3GeH/Et2Zn is examined. These reactions proceed through the addition of silicon- or germanium-centered radicals across the carbon≡carbon triple bond followed by the trapping by diethylzinc of the produced vinyl radical through homolytic substitution at the zinc atom. The influence of the hydroxy unit on the regio- and stereoselectivity of these reactions is discussed and compared to its role played in radical hydrosilylation and hydrogermylation reactions. Protocols developed to achieve the β-regioselective silylzincation of propargyl alcohol and the α-regioselective germylzincation of internal propargylic alcohols are particularly important, as they occur with trans stereoselectivity. For both procedures the C(sp2)−Zn bond remains available for subsequent in-situ electrophilic substitution leading overall to net alkyne trans difunctionalization.  相似文献   

14.
Previous applications of the Flory–Patterson theory in the analysis of the excess molar enthalpies at 25°C for some binary mixtures composed of ethers, n-alkanes, br-alknes, and cycloalkanes are reviewed. The possibility of correlating the Flory interaction parameters X ij in terms of the acentric factors of the components is examined. For selected ether (1) + n-alkane(2) mixtures, a set of linear relations between X 12 and the acentric factors of the n-alkanes are reported.Visiting Professor on sabbatical leave from the  相似文献   

15.
16.
The density functional theory (DFT) is the most popular method for evaluating bond dis-sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com-posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark values for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number ≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20 ≤atoms number ≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are advised to apply for large systems (atoms number ≥50), and the M06-2X and B3P86 methods are also favorable. Moreover, the di erences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.  相似文献   

17.
18.
19.
We report herein an atom‐economical and sustainable approach to access amidinyl radical intermediates through the anodic cleavage of N−H bonds. The resulting nitrogen‐centered radicals undergo cyclizations with (hetero)arenes, followed by rearomatization, to afford functionalized tetracyclic benzimidazoles in a highly straightforward and efficient manner. This metal‐ and reagent‐free C−H/N−H cross‐coupling reaction exhibits a broad substrate scope and proceeds with high chemoselectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号