首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用溶胶-凝胶法合成了锂离子正极材料Li3V2(PO4)3/C(LVP/C)及Li2.5Na0.5V2(PO4)3/C,并用XRD、循环伏安及交流阻抗等方法,研究了大量Na+掺杂对材料结构和电化学性能影响。结果表明,大量钠离子的掺杂会使LVP结构由单斜向菱方转变。掺杂化合物Li2.5Na0.5V2(PO4)3/C在0.5 C充电1 C放电时,首次放电容量为118 mAh.g-1,50次循环后容量保持率为92.4%,并发现与单斜LVP存在多个放电平台不同,Li2.5Na0.5V2(PO4)3/C仅在3.7 V处有一个放电平台。  相似文献   

2.
以MoO42-部分取代Li3Fe2(PO43中的PO43-,研究表明:加入的MoO42-离子主要以固溶形式存在于Li3Fe2(PO43中,起到了显著改善其电化学性能的作用。其中,MoO42-掺杂浓度为0.3的样品表现出最佳的电化学性能,其在0.5C倍率下的首次放电容量为113.7 mAh·g-1,这一数值比未掺杂的提高了20.7%;经过60次循环充放电,容量保持率为94%。将放电倍率从0.5C逐步增大至5C,再降至初始的0.5C,并在每个倍率循环10次,这一材料的最终放电容量可达首次0.5C的95%。这些优异的性能应归因于MoO42-掺杂使材料的氧化还原能力增强,氧化还原电对的电势差减小,电池内部的电荷转移电阻减小,以及Li+扩散系数增加。  相似文献   

3.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

4.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

5.
单斜Li3V2(PO4)3/C复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以LiOH·H2O、V2O5、H3PO4和蔗糖为原料,采用软化学法制备了锂离子电池正极材料Li3V2(PO4)3/C.通过X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,采用恒电流充放电、电化学阻抗考察了产物的电化学性能.结果表明.当煅烧温度达到700℃时,杂质相衍射峰消失,所得的样品为纯相的单斜Li3V2(PO4)3.颗粒粒度为1~2 μm;在3.0~4.5 V电压范围内以0.2C倍率充放电,首次放电比容量达到148.2 mAh·g-1,第50次循环比容量仍为144 mAh·g-1,容量保持率为97%,具有良好的循环性能;另外,样品还具有很好的倍率性能和高温性能.  相似文献   

6.
唐致远  袁威  闫继  毛文峰  马莉 《电化学》2012,(2):113-117
以Li2CO3、NH4H2PO4、V2O5和MoO3为原料,柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备了锂离子正极材料Li3MoxV2-x(PO4)3/C(x=0.01,0.02,0.03).X射线衍射(XRD)表明,合成的材料具有单一的单斜晶系结构,空间群为P21/n.扫描电镜(SEM)显示Li3Mo0.02V1.98(PO4)3/C具有均一的表面形貌.恒流充放电测试表明,当x=0.02时,掺杂后的Li3Mo0.02V1.98(PO4)3具有最佳的电化学性能.在1C倍率下,3.0~4.3 V电位区间,Li3Mo0.02V1.98(PO4)3/C的首次放电比容量达到122.3 mAh.g-1,循环50周之后,容量没有衰减的迹象;而当x=0、0.01和0.03时,首次放电比容量仅分别为117.1、115.1和116.0 mAh.g-1.在3C和5C倍率下,样品Li3Mo0.02V1.98(PO4)3/C仍能保持优异的循环稳定性.  相似文献   

7.
采用溶胶-凝胶法用SO~(2-)_4部分代替Li_3Fe_2(PO_4)_3中的PO~(3-)_4阴离子制得Li_(3-x)Fe_2(PO4)_(3-x)(SO_4)_x(x=0~0.90)正极材料,通过X射线衍射、充放电技术、循环伏安特性测试及电化学阻抗谱表征了掺杂材料的相组成及电化学性能.结果表明,SO~(2-)_4主要以固溶形式存在于Li_3Fe_2(PO_4)_3中,产物中还伴有少量Fe_2O_3第二相析出.SO~(2-)_4掺杂使Li_3Fe_2(PO_4)_3的放电容量呈抛物线形规律变化,并在掺杂浓度x=0.60时达到最佳值,该样品在0.5C倍率下的首次放电容量为111.59 mA·h/g,比未掺杂的样品提高了18.4%;60次循环充放电后的容量保持率为96%;将该样品的放电倍率由0.5C逐渐提高至5C,再降至0.5C,并在每个倍率下循环10次,材料的最终放电容量仍能达到首次放电容量的97%.导致这些变化的原因是SO~(2-)_4掺杂使材料的氧化还原性能增强,电池内阻减小,极化程度降低及Li~+扩散系数增大.  相似文献   

8.
利用碳热还原法成功制备了碳包覆Li3V2(PO4)3正极材料。X射线衍射研究表明材料具有纯相单斜结构。高分辨透射电子显微镜观察到材料表面存在5~10 nm的包覆碳层。碳包覆Li3V2(PO4)3材料在3.0~4.3 V电压区间内可提供120 mA.h/g(C/4倍率)、115 mA.h/g(1C倍率)和110 mA.h/g(2C倍率)的可逆容量,并且在循环300次后容量保持率超过97%,显示出良好的应用前景。该材料在充放电循环初期经历了不可逆容量损失。高分辨透射电子显微镜研究表明,该不可逆容量损失来源于材料表面生成的固体电解质中间相(SEI膜),红外光谱分析表明,SEI膜的成份主要包括ROCO2Li和RCO2Li等有机物,以及Li2CO3、LixPFy和LixPOyFz等无机物。表面SEI膜经历初期电化学循环后趋于稳定,从而保证碳包覆Li3V2(PO4)3正极材料优良的电化学性能。  相似文献   

9.
以Fe(NO3)3,LiNO3,NH4H2PO4和NaNO3为原料,采用简单的液相-碳热还原法合成Li0.97Na0.03FePO4/C复合正极材料.使用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电等测试技术研究了材料的结构及倍率充放电性能.通过循环伏安(CV)曲线和电化学阻抗谱(EIS)研究电极反应过程中的动力学特点.结果表明,Na掺杂形成了具有橄榄石结构的Li0.97Na0.03FePO4固溶体,并增大了晶格中Li+一维扩散通道,使LiFePO4/C的电荷转移电阻减小了约2/3,Li+扩散系数提高了3~4倍.因此,Li0.97Na0.03FePO4/C首次放电比容量在0.1 C和2 C倍率下分别达到152 mAh g-1和109 mAh g-1,比未掺杂的LiFePO4/C的放电比容量分别提高了4.83%和62.69%.  相似文献   

10.
本文以本文通过高温固相反应合成了Nasicon型的Li3Fe2(PO4)3电极材料。XRD结果显示850℃烧结得到的Li3Fe2(PO4)3结晶性最好。为了优化Li3Fe2(PO4)3电极的性能,使用行星球磨将制备得到的Li3Fe2(PO4)3与乙炔炭黑混合均匀,得到了Li3Fe2(PO4)3/C复合正极材料。扫描电镜照片显示,球磨后活性材料的颗粒尺寸明显减小,而且更加均匀。对于Fe^3+/Fe^2+的氧化还原电对,恒电流充放电测试和伏安循环法揭示Li3Fe2(PO4)3/C复合正极材料再放电过程中在2.8和2.7V具有两个电压平台。样品球磨后,与800℃和900℃烧结得到的Li3Fe2(PO4)3相比,850℃烧结得到的材料具有更好的可逆性和更高的容量保持性,而且它的比容量在初始循环以C/20的倍率放电可以达到92mAhg^-1以及在结束时的循环以C/10的倍率放电还具有62mAhg^-1。  相似文献   

11.
采用两步固相反应合成了锂、铁双位掺杂的锂离子电池正极材料Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)。通过X射线衍射(XRD)、扫描电镜(SEM)以及恒电流充放电测试,研究了复合材料的晶体结构、形貌以及电化学性能。实验结果表明,制备的Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)为纯相,掺杂适量的Nb5+、Mg2+离子可减小材料的晶粒尺寸,当Nb离子掺杂量为1mol%、Mg离子掺杂量为3mol%时,Li0.99Nb0.01Fe0.97Mg0.03PO4/C的电化学性能最佳。室温下,0.2C、1C、2C、4C(1C=170mA·g-1)倍率充放电其首次放电比容量分别为153.7、149.7、144.6、126.4mAh·g-1,即使在8C倍率下放电其放电比容量也有92.2mAh·g-1,并表现出良好的循环性能。  相似文献   

12.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能。XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数。CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率。充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量。质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化。  相似文献   

13.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能.XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数.CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率.充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量.质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化.  相似文献   

14.
以V2O5、NH4H2PO4、LiOH、柠檬酸、三嵌段聚合物表面活性剂P123为原料, 用流变相(RPR)法制备了Li3V2(PO4)3/C正极材料. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法表征, 结果表明: 材料为单一纯相的单斜晶体结构, 颗粒均匀并呈现珊瑚结构; 恒流充放电, 循环伏安(CV)及电化学交流阻抗(EIS)等电化学性能测试表明, 采用P123 辅助合成材料电化学性能明显优于未采用P123 辅助合成材料. 3.0-4.3 V放电区间, 0.1C充放电下P123 辅助合成Li3V2(PO4)3/C材料首次放电比容量为129.8 mAh·g-1, 经过50 次循环后容量只衰减0.9%; 倍率性能及循环性能优异, 1C、10C、25C的首次放电比容量分别为128.2、121.3、109.1 mAh·g-1, 50次循环后容量保持率分别为99.1%, 96.9%, 90.7%. 这归因于三嵌段聚合物P123 作为分散剂的同时也作为有机碳源在颗粒表面及间隙形成碳网络, 有利于材料导电率的改善, 降低了其电荷转移阻抗, 减小了电极充放电过程的极化现象.  相似文献   

15.
本文以LiOH.H2O、NH4VO3、H3PO4和柠檬酸为原料,采用溶胶-喷雾干燥法制备Li3V2(PO4)3/C正极材料,对比了喷雾前驱体直接煅烧与机械活化后煅烧的样品的结构、形貌及其电化学性能。采用XRD、SEM、BET和振实密度测试等对样品的结构、形貌等进行了表征;采用恒流充放电、CV和EIS等手段考察了材料的电化学性能。结果表明,溶胶-喷雾干燥得到的样品为多孔球壳形,其壳体由厚度为100 nm左右的纳米片组成,经机械活化后煅烧保持保持了其纳米片结构,其结晶度与振实密度改善较明显,电化学性能较优异。0.1C放电比容量为123.6 mAh.g-1,10C和20C高倍率放电比容量还高达107.8和106.0 mAh.g-1。电化学阻抗结果表明,由该方法制备的样品具有较小的电荷转移阻抗。  相似文献   

16.
本研究采用PO43-掺杂和AlF3包覆的协同改性策略制备了P-LNCM@AlF3正极材料(P=PO43-,LNCM=Li1.2Ni0.13Co0.13Mn0.54O2),提高了LNCM的结构稳定性以及抑制了界面副反应。其中,大四面体的PO43-聚阴离子掺杂在晶格中抑制了过渡金属离子的迁移,降低体积变化,从而稳定了晶体结构,而且PO43-掺杂能够扩大锂层间距,促进Li+的扩散,从而提升材料的倍率性能。此外,AlF3包覆层能抑制材料与电解液的副反应从而提升界面稳定性。基于以上优势,P-LNCM@AlF3正极表现出了优异的电化学性能。在1C电流密度下表现出了179.2 mAh·g-1  相似文献   

17.
本研究采用PO43-掺杂和AlF3包覆的协同改性策略制备了P-LNCM@AlF3正极材料(P=PO43- ,LNCM=Li1.2Ni0.13Co0.13Mn0.54O2),提高了LNCM的结构稳定性以及抑制了界面副反应。其中,大四面体的PO43-聚阴离子掺杂在晶格中抑制了过渡金属离子的迁移,降低体积变化,从而稳定了晶体结构,而且PO43-掺杂能够扩大锂层间距,促进Li+的扩散,从而提升材料的倍率性能。此外,AlF3包覆层能抑制材料与电解液的副反应从而提升界面稳定性。基于以上优势,P-LNCM@AlF3正极表现出了优异的电化学性能。在1C电流密度下表现出了179.2 mAh·g-1的放电比容量,循环200圈后仍有161.5 mAh·g-1的放电比容量,容量保持率可达90.12%。即使在5C的高电流密度下仍可提供128.8 mAh·g-1的放电比容量。  相似文献   

18.
采用水热法合成了聚阴离子掺杂LiMnO2-yXy(X=BF4-,SiO32-,MoO42-,PO43-,BO33-,y=0.01、0.03、0.05)锂离子电池正极材料。通过X射线粉末衍射(XRD)、X光电子能谱(XPS)、扫描电镜(SEM)和恒电流充放实验,研究了不同掺杂离子和掺杂量对产物结构和电化学性能的影响。结果表明,少量聚阴离子的掺杂未改变正交LiMnO2的晶体类型,但增大了材料晶胞体积,改善了材料的电化学循环性能。电化学交流阻抗(EIS)测试结果表明,聚阴离子掺杂增大了材料电荷转移阻抗,但明显提高了材料中Li+的扩散能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号