首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polymer blends undergo external stresses such as pressure and shear in course of processing cycles. The knowledge of their phase behavior at each step of these cycles is crucial for understanding their physical properties and eventually improves their performance in practical applications. The effects of shear on the phase diagram of binary polymer blends are considered. A theoretical formulism is used upon which the free energy is the sum of two terms. The first term is modeled with the Flory–Huggins free energy of mixing and describes the thermodynamic behavior of the system in the quiescent state. The second term represents the excess free energy stored during flow. In the presence of shear flow, the excess free energy is expressed in terms of the viscosity and the shear modulus. Both quantities depend on composition and shear rate. The curvature of the variation of viscosity versus composition has a tremendous impact upon the nature of phase separation. Phase diagrams are described by the spinodal curves and show for the case considered here miscibility enhancement with increasing shear rate. A good correlation is found with experimental data of the literature on blends of polystyrene acrylonitril copolymer and polymethylmethacrylate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
Due to the enormous benefits inherent to composite materials, they have been widely used in the most diverse fields of engineering. Therefore, it is not surprising that in many of these applications they can be exposed to hostile environments, which can affect the mechanical performance of such materials. Therefore, the main goal of this work was to study the effect of immersion into different hostile solutions on the impact strength and, subsequently, to evaluate the residual fatigue life. For this purpose, the specimens were initially immersed into solutions of hydrochloric acid (HCl), sodium hydroxide (NaOH), sulphuric acid (H2SO4), diesel, distilled water, and seawater. Subsequently, the specimens were subjected to impact loads with an energy of 12 J and, finally, subjected to fatigue loads to assess the residual fatigue life. Seawater and NaOH solution provided the lowest impact strength. This was confirmed by the lower energy restored and impact bending stiffness (IBS), a parameter that allows evaluating the damage resistance of a composite. In terms of restored energy, for example, the seawater promoted a decrease around 30.4% in relation to the value obtained with non-immersed samples, while this value was 27.6% for the alkaline solution (NaOH). In terms of IBS, the lowest values were also obtained with these solutions (437.4 and 444.9 N/mm, respectively). Finally, the lowest residual fatigue life was also observed for these two solutions, and it was noticed that there was a direct relationship between the IBS and the residual fatigue life.  相似文献   

3.
This article reports initial results of an investigation whose aim is to characterize fatigue damage induced in semicrystalline polymers subjected to uniaxial high cycle fatigue. Herein we report results obtained from fatiguing tensile bars of high molecular weight compression-molded alpha-phase iPP. Samples were fatigued for up to one million cycles at a frequency of 2 Hz. During fatigue, in situ measurements of dynamic mechanical response and energy densities were recorded. Postmortem morphological studies were also conducted using SEM of etched surfaces and TOM. The results show that damage formation occurs in a regularly spaced array of crazes. This damage, its evolution, and energetics are discussed as they relate to the overall fatigue life of the material. A methodology to isolate the energy consumption for the formation of a single craze is given. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2751–2760, 1998  相似文献   

4.
The goal of this paper is to relate the fatigue lifetime to the energy dissipation and the crack population for a Natural Rubber (NR) compound filled with carbon black. First, the dissipated energy is measured by thermal measurements and its evolution with the local strain is described. Then, the crack population under fatigue loading is investigated thanks to interrupted fatigue tests and SEM measurements. The dependency of the evolution of the crack surface density on the local strain and number of cycles is described. Finally, a fatigue criterion is suggested, starting from the basic assumption of accumulation of dissipated energy along the fatigue cycles. Combining the evolution of the dissipated energy and the crack surface density, the energetic criterion can be written as a simple expression using a single parameter. The predictions obtained with the identified criterion are compared with the results from classic fatigue tests and very close agreement is found.  相似文献   

5.
The efficiency of catalytic cycles is measured by their turnover frequency (TOF). The degree of TOF control determines which states contribute most to the rate of the cycle, and thus indicates the steps that have the highest impact on the cycle. A kinetic model developed by Christiansen (Christiansen, J. A. Adv. Catal. 1953, 5, 311) for catalytic cycles is implemented here in a form that utilizes state energies. This enables one to assess the efficiency of quantum mechanically computed catalytic cycles like the palladium-catalyzed cross-coupling and Heck reactions, to test alternative hypotheses, and to make some predictions. This implementation can also account for effects such as Sabatier's volcano curve for heterogeneous catalysis. The model leads to a dependence of the TOF for any cycle on the "corrected" energy span quantity, deltaE, whose precise expression depends on the location of the summit and trough of the cycle in the step sequence of the cycle. Thus, knowing the highest energy transition state, the most abundant reaction intermediate, and the reaction energy enables one to make quick predictions about relative efficiency of cycles. At the same time, the degree of TOF control determines which states contribute most to the rate of reaction, and thus indicates the values to be included in the calculation of the energetic span and the steps that may be tinkered with to improve the cycle.  相似文献   

6.
Experimental results for investigation of dynamical crack resistance curves in the instrumented Charpy impact test on polypropylene (PP)/glass fibre composites are presented. For this purpose the multiple specimen R-curve method, stop-block technique is used. With the aid of J-integral versus stable crack growth (δa) curves the influence of a special coupler system on crack toughness as resistance against stable crack growth is discussed. It is shown that it is possible to quantify different energy dissipative processes with the new fracture mechanical material value J × T7 (T7 - tearing modulus). The problems of determining physical crack initiation values for short fibre composites are discussed. The physical material background for using the ‘plastic hinge’ model to describe the deformation behaviour of PP/glass fibre composites is shown, using the example of selected crack opening displacement (σ) versus δa curves.  相似文献   

7.
In this article, we present a study of the influence of temperature and humidity on the electric conductivity of polyaniline and polypyrrole thin films doped with iodine and synthesized by plasma (PAn/I and PPy/I, respectively). The polymers presented the characteristic ohmic conduction mechanism via electrons; however, the conductivity was much lower than that presented by the polymers obtained by traditional chemical oxidation. We submitted the polymers to heating–cooling cycles to study the temperature dependence of the conductivity. During the heating stage of the cycles, the electric conductivity of PPy/I showed a strong dependence on the humidity content. However, during the cooling step, the plots of conductivity, as a function of the inverse temperature of PPy/I and PAn/I, showed typical Arrhenius behavior. The activation energy of PPy/I had an average value of 1.1 ± 0.1 eV and was independent of the reaction time, whereas PAn/I presented a more complex behavior with activation energies that depended on the reaction time and the regional crystallinity induced in the heating step of the cycles. All the activation energies were below 2 eV, which places them in the semiconductor regime. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3247–3255, 2000  相似文献   

8.
Acrylonitrile butadiene rubber (NBR) compounds filled with different concentrations of graphite nanoplatelets were experimentally investigated. The stress–strain curves of the nanocomposites were studied, which suggest good filler–matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non‐spherical particles. The effect of graphite nanoplatelets on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress–strain relationships for any cycle were described by applying Ogden's model for rubber nanocomposites. With this model for incompressible materials, expressions may be developed to predict the stress–strain relationship for any given cycle. The dissipated energy increased with graphite nanoplatelets concentrations and decrease with number of cycles. The rate of damage accumulation becomes marginal after first ten cycles. The rate of damage increases as the amount of graphite nanoplatelets increase into the rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Surface-induced dissociation (SID) and reactions following impact of well-defined ion beams of polyatomic cations C2H5OH+, CH4+, and CH5+ (and its deuterated variants) at several incident angles and energies with self-assembled monolayers (SAM), carbon surfaces, and hydrocarbon covered stainless steel were investigated by the scattering method. Energy transfer and partitioning of the incident projectile energy into internal excitation of the projectile, translational energy of products, and energy transferred into the surface were deduced from the mass spectra and the translational energy and angular distributions of the product ions. Conversion of ion impact energy into internal energy of the recoiling ions peaked at about 17% of the incident energy for the perfluoro-hydrocarbon SAM, and at about 6% for the other surfaces investigated. Ion survival probability is about 30–50 times higher for closed-shell ions than for open-shell radical cations (e.g., 12% for CD5+ versus 0.3% for CD4+, at the incident angle of 60° with respect to the surface normal). Contour velocity plots for inelastic scattering of CD5+ from hydrocarbon-coated and hydrocarbon-free highly oriented pyrolytic graphite (HOPG) surfaces gave effective masses of the surface involved in the scattering event, approximately matching that of an ethyl group (or two methyl groups) and four to five carbon atoms, respectively. Internal energy effects in impacting ions on SID were investigated by comparing collision energy resolved mass spectra (CERMS) of methane ions generated in a low pressure Nier-type electron impact source versus those generated in a Colutron source in which ions undergo many collisions prior to extraction and are essentially vibrationally relaxed. This comparison supports the hypothesis that internal energy of incident projectile ions is fully available to drive their dissociation following surface impact.  相似文献   

10.
以尼龙材料的应力松弛行为作为研究对象, 考察初始应变为1.0%, 2.8%和5.1%的尼龙1010样品在温度区间293353 K的松弛曲线, 采用时间-温度等效叠加方法得到了松弛模量主曲线, 计算出叠加过程中的表观活化能、 松弛过程中的活化体积和应力辅助功. 结果表明, 整个松弛过程中的表观活化能和应力辅助功表现出相同的变化趋势, 体现出松弛过程中克服运动单元位垒的过程. 当293323 K区间的松弛曲线叠加时, 随着初始应变的增加, 表观活化能和应力辅助功均逐渐降低, 有助于聚合物内部的运动单元越过能垒发生松弛, 与松弛过程中的应力辅助热活化理论相一致; 当333353 K区间的松弛曲线叠加时, 不同初始应变样品的表观活化能均为260 kJ/mol, 应力辅助功均为60 MPa·nm3, 说明松弛过程中克服运动单元的能垒与应力作用无关. 根据松弛主曲线, 计算出了尼龙1010在1.0%, 2.8%和5.1% 3种形变下, 长时间范围内应力衰减与时间的关系, 为预测实际使用过程中的应力松弛行为提供了依据.  相似文献   

11.
The swelling‐driven fatigue behavior of polymer fuel cell membranes during relative humidity (RH) cycling is investigated. In particular, swelling‐induced membrane stresses are obtained from a numerical model simulating fuel cell RH cycle tests, and compared to the lifetimes obtained experimentally from tests conducted in the absence of electrochemical effects. A strong correlation between the lifetimes of the membranes in the actual tests and model results is obtained. In general, higher RH (or swelling) amplitude results in larger stress amplitudes and shorter lifetime, that is, fewer cycles to failure. Tensile stresses are needed for forming local cavities in the membrane, which may eventually lead to craze formation. Cavitation is less likely to occur in compressed membrane at high humidities. The stress–lifetime plots for polymer fuel cell membranes exhibit similar features to those observed for other polymers. The crazing criterion for polymers suggests that craze initiation during RH cycling is more likely to occur in the low compression regions, such as under the channels, which is in agreement with experimental observations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1506–1517, 2011  相似文献   

12.
A three-dimensional time-dependent quantum mechanical wave packet approach is used to calculate reaction probability (P(R)) and integral reaction cross section (sigma(R)) values for both the channels of the reaction He + HD(+) (v = 1; j = 0, 1, 2, 3) --> HeH(D)(+) + D(H), over a range of translational energy (E(trans)) on the McLaughlin-Thompson-Joseph-Sathyamurthy (MTJS) potential energy surface using centrifugal sudden approximation for nonzero total angular momentum (J) values. The reaction probability plots as a function of translational energy for different J values exhibit several oscillations, which are characteristic of the system. It is shown that HeH(+) is preferred over HeD(+) for large J values and that HeD(+) is preferred over HeH(+) for small J values for all the rotational (j) states studied. The integral reaction cross section for both the channels and therefore the isotopic branching ratio for the reaction depend strongly on j in contrast to the marginal dependence shown by earlier QCT calculations. The computed results are in overall agreement with the available experimental results.  相似文献   

13.
Acrylonitrile butadiene rubber (NBR) compounds filled with 40 phr of high abrasion furnace black (HAF) and HAF (20 phr)/graphite (20 phr) were experimentally investigated. The stress-strain curves of the composites were studied, which are described by applying Ogden's model. The effect of cyclic fatigue and hysteresis was also examined. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A continuum damage model is used to investigate the fatigue damage behavior for elastomers. Experiments on the cyclic fatigue of a carbon-filled NBR rubber and carbon/graphite filled NBR rubber were conducted to determine the relation between the number of cyclic fatigue and the strain amplitude. The results indicate that the theoretical formula for the number of cyclic fatigue as a function of the strain amplitude, derived from the damage model, can describe experimental data for the prepared samples very well.  相似文献   

14.
Dy(3+)-doped fluorophosphate glasses with composition (in mol%) (56-x/2)P(2)O(5)+17K(2)O+(15-x/2)BaO+8Al(2)O(3) + 4AlF(3)+ xDy(2)O(3), x=0.01, 0.05, 0.1, 1.0 and 2.0, have been prepared by melt quenching technique. The luminescence spectra and lifetimes of (4)F(9/2) level of Dy(3+) ions in these glasses have been measured using the 457.9 nm line of argon ion laser as an excitation source. The free-ion calculation and Judd-Ofelt analysis have been performed. The room temperature emission spectra corresponding to (4)F(9/2)-->(6)H(J) (J=7/2, 9/2, 11/2, 13/2 and 15/2) transitions of Dy(3+) ions were measured. The fluorescence decay from (4)F(9/2) level have been measured by monitoring the intense (4)F(9/2)-->(6)H(13/2) transition. The lifetime of the decay is obtained by taking the first e-folding times of the decay curves and is found to decrease with increase in Dy(3+) ions concentration due to concentration quenching. The decay curves are found to be perfectly single exponential for samples with low Dy(3+) ion concentration. The non-exponential decay curves observed for higher concentrations are well fitted to the Inokuti-Hirayama model for S=6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole nature. The energy transfer parameter and donor to acceptor interaction increases with Dy(3+) ions concentration due to increase of energy transfer from Dy(3+) (donor) to unexcited Dy(3+) (acceptor) ions.  相似文献   

15.
The generalized Crooks theorem (GCT) for deterministic non-Hamiltonian molecular dynamics simulations [Phys. Rev. E 75, 050101 (2007)] connects the probabilities of nonequilibrium realizations switching the system between two thermodynamic states, to the partition functions of these states. In comparison to the "classical" Crooks nonequilibrium work theorem [J. Stat. Phys. 90, 1481 (1998)], which deals with realizations involving only mechanical work, the GCT also accounts for additional work resulting from changes of the intensive and extensive thermodynamic variables of the system. In this article we present a numerical verification of the GCT using a Lennard-Jones fluid model where two particles are subject to a time-dependent external potential. Moreover, in order to switch the system between different thermodynamic states, the temperature and the pressure (or volume), which are controlled through the Martyna-Tobias-Klein equations of motion [J. Chem. Phys. 101, 4177 (1994)], are also varied externally. The free energy difference between states characterized by different distances of the target particles is evaluated using both a standard methodology (pair radial distribution functions) and the GCT. In order to exploit the various options provided by the GCT approach, i.e., the possibility of temperature/pressure/volume changes during the realizations, the free energy difference is recovered via arbitrary thermodynamic cycles. In all tests, the GCT is quantitatively verified.  相似文献   

16.
Bisphenol M was subjected to interfacial polycondensations in an NaOH/CH2Cl2 system with triethylamine as a catalyst. Regardless of the catalyst concentration, similar molecular weights were obtained, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra exclusively displayed mass peaks of cycles (detectable up to 15,000 Da). With triethyl benzyl ammonium chloride as a catalyst, linear chains became the main products, but the contents of the cycles and the molecular weights strongly increased with higher catalyst/bisphenol ratios. When the pseudo‐high‐dilution method was applied, both diphosgene and triphosgene yielded cyclic polycarbonates of low or moderate molecular weights. Size exclusion chromatography measurements, evaluated with the triple‐detection method, yielded bimodal mass distribution curves with polydispersities of 5–12. Furthermore, a Mark–Houwink equation was elaborated, and it indicated that the hydrodynamic volume of poly(bisphenol M carbonate) was quite similar to that of poly(bisphenol A carbonate)s with similar concentrations of cyclic species. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1248–1254, 2005  相似文献   

17.
The thermal stability of ethylene–propylene elastomers in the presence of light stabilizing antioxidant (Topanol OC) is studied. The oxygen uptake method was performed for determination of thermal oxidation in air atmosphere at constant temperatures (165°C, 175°C and 185°C). The experimental unit used for oxygen uptake measurements is described. The dependence of absorbed oxygen on various oxidation times reveals marked dissimilarity between the two ethylene–propylene elastomers, because the terpolymer contains 3.5% ethylidene-norbornene. Changes in the activation energy of oxidation are evaluated over the whole process time. Free energy vs reaction time curves for all degradation experiments are presented and some remarks on entropy change for the overall process are made in order to explain oxygen-containing product accumulation. Using Arrhenius plots the durability of EPDM/Topanol OC system was calculated.  相似文献   

18.
RHF/aug-cc-pVnZ, UHF/aug-cc-pVnZ, and QCISD/aug-cc-pVnZ, n = 2-5, potential energy curves of H2 X (1) summation g (+) are analyzed by Fourier transform methods after transformation to a new coordinate system via an inverse hyperbolic cosine coordinate mapping. The Fourier frequency domain spectra are interpreted in terms of underlying mathematical behavior giving rise to distinctive features. There is a clear difference between the underlying mathematical nature of the potential energy curves calculated at the HF and full-CI levels. The method is particularly suited to the analysis of potential energy curves obtained at the highest levels of theory because the Fourier spectra are observed to be of a compact nature, with the envelope of the Fourier frequency coefficients decaying in magnitude in an exponential manner. The finite number of Fourier coefficients required to describe the CI curves allows for an optimum sampling strategy to be developed, corresponding to that required for exponential and geometric convergence. The underlying random numerical noise due to the finite convergence criterion is also a clearly identifiable feature in the Fourier spectrum. The methodology is applied to the analysis of MRCI potential energy curves for the ground and first excited states of HX (X = H-Ne). All potential energy curves exhibit structure in the Fourier spectrum consistent with the existence of resonances. The compact nature of the Fourier spectra following the inverse hyperbolic cosine coordinate mapping is highly suggestive that there is some advantage in viewing the chemical bond as having an underlying hyperbolic nature.  相似文献   

19.
使用4种应用较为广泛的激光粒度仪(Mastersizer2000、Bettersize2000、Horiba LA950和LS13320)对粒度差异较小的下蜀土(土塘剖面)进行了测试,从而对比分析不同激光粒度仪对于下蜀土的粒度组成测试差异及其这种差异对研究结果可能产生的影响.结果表明:对粉砂颗粒组分的分析,4种激光粒度分析仪分析结果的差异最小,而对砂和粘土颗粒组分分析的差异最大.就粒度频数曲线、概率累积曲线、粒度组分、C-M图、粒度参数散点图及粒度参数剖面垂向变化等统计参数与统计方式而言,4种仪器的测试结果均有一定的差异,其中,概率累积曲线、粒度参数散点图差异较大.粒度参数的剖面变化差异也较大,影响了对剖面的阶段性划分,这在一定程度上影响了研究结果,造成使用不同仪器,可能会得出不同的结果.  相似文献   

20.
Nitrile butadiene rubber, NBR, structural foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples after the application of cyclic stress-strain were measured. The effect of the cyclic stress-strain on strain energy density of ADC/K foaming agent-filled NBR rubber composites was studied. The mechanical parameters were found to depend on the foaming agent concentration and on the pre-cyclic fatigue number. Results also indicated that the strain energy decreased with filler concentration.The effects of the cyclic stress-strain on the conductivity of ADC/K foaming agent-filled NBR rubber composites were studied. The electrical properties were found to depend on the foaming agent concentration, the strain amplitude and the number of stress-strain cycles of pre-strain. This study was assisted by the current-voltage characteristics which were measured under the effect of different compression ratios: 0%, 5%, 10%, 15%, 20%, 25% and 30%. The free current carrier mobility and the equilibrium concentration of charge carriers in the conduction band were produced as functions of compressive strain. Results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号