首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Simple methods of preparing silver and gold nanoshells on the surfaces of monodispersed polystyrene microspheres of different sizes as well as of silver nanoshells on free-standing gold nanoparticles are presented. The plasmon resonance absorption spectra of these materials are presented and compared to predictions of extended Mie scattering theory. Both silver and gold nanoshells were grown on polystyrene microspheres with diameters ranging from 188 to 543 nm. The commercially available, initially carboxylate-terminated polystyrene spheres were reacted with 2-aminoethanethiol hydrochloride (AET) to yield thiol-terminated microspheres to which gold nanoparticles were then attached. Reduction of silver nitrate or gold hydroxide onto these gold-decorated microspheres resulted in increasing coverage of silver or gold on the polystyrene core. The nanoshells were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis spectroscopy. By varying the core size of the polystyrene particles and the amount of metal (silver or gold) reduced onto them, the surface plasmon resonance of the nanoshell could be tuned across the visible and the near-infrared regions of the electromagnetic spectrum. Necklace-like chain aggregate structures of gold core–silver shell nanoparticles were formed by reducing silver nitrate onto free citrate-gold nanoparticles. The plasmon resonance absorption of these nanoparticles could also be systematically tuned across the visible spectrum.  相似文献   

2.
Gold nanoparticles conjugated with DNA represent an attractive and alternative platform for broad applications in biosensors, medical diagnostic, and biological analysis. However, current methods to conjugate DNA to gold nanoparticles are time-consuming. In this study, we report a novel approach to rapidly conjugate DNA to gold nanoparticles (AuNPs) to form functional DNA/AuNPs in 2-3 h using Tween 80 as protective agent. With a fluorescence-based technique, we determine that the DNA density on the surface of AuNPs achieves about ~60 strands per particles, which is comparable to the loading density in the current methods. Moreover, the DNA/AuNPs synthesized by our approach exhibit an excellent stability as a function of temperature, pH, and freeze-thaw cycle, and the functionality of DNA/AuNPs conjugates is also verified. The work presented here has important implications to develop the fast and reproducible synthesis of stable DNA-functionalized gold nanoparticles.  相似文献   

3.
A major challenge in the area of DNA detection is the development of rapid methods that do not require polymerase chain reaction (PCR) amplification of the genetic sample. The PCR amplification step increases the cost of the assay, the complexity of the detection, and the quantity of DNA required for the assay. In this context, methods that are able to perform DNA analyses with ultrasensitivity have recently been investigated with the aim of developing new PCR-free detection protocols. Functionalized gold nanoparticles have played a central role in the development of such methods. Here, possibilities offered by functionalized gold nanoparticle in the ultrasensitive detection of DNA are discussed. The different functionalization protocols available for gold nanoparticles and the principal DNA detection methods that are able to detect DNA at the femtomolar to attomolar level are presented.  相似文献   

4.
严亚  李津如  杨云 《化学进展》2009,21(5):971-981
综述了近年来单分散球状金纳米颗粒的合成研究进展。分析了球状单分散金纳米颗粒的应用前景,介绍了单分散球状金纳米颗粒的主要合成方法如种子生长、回流熟化、尺寸选择沉淀分级以及电泳法等,评述了各种方法的优缺点。最后提出了单分散球状金纳米颗粒合成的一些问题,并展望了单分散球状金纳米颗粒的研究和发展方向。  相似文献   

5.
采用点击化学和可逆加成断裂链转移活性自由基聚合方法制备了温度和pH双重响应的金纳米粒子. 通过红外光谱(FTIR)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)及热重分析(TGA)等方法对双重响应性金纳米粒子进行了表征. 该金纳米杂化粒子具有良好的分散性, 其表面接枝聚合物的密度约为0.6 Chain/nm2. 通过改变温度和pH条件, 考察了金纳米杂化粒子的可逆响应行为. 实验结果表明, 点击化学和可逆加成断裂链转移活性自由基聚合方法实现了金纳米粒子修饰的简单化、可控化以及功能化.  相似文献   

6.
Lou S  Ye JY  Li KQ  Wu A 《The Analyst》2012,137(5):1174-1181
Four different sized gold nanoparticles (14 nm, 16 nm, 35 nm and 38 nm) were prepared to conjugate an antibody for a gold nanoparticle-based immunochromatographic assay which has many applications in both basic research and clinical diagnosis. This study focuses on the conjugation efficiency of the antibody with different sized gold nanoparticles. The effect of factors such as pH value and concentration of antibody has been quantificationally discussed using spectra methods after adding 1 wt% NaCl which induced gold nanoparticle aggregation. It was found that different sized gold nanoparticles had different conjugation efficiencies under different pH values and concentrations of antibody. Among the four sized gold nanoparticles, the 16 nm gold nanoparticles have the minimum requirement for antibody concentrations to avoid aggregation comparing to other sized gold nanoparticles but are less sensitive for detecting the real sample compared to the 38 nm gold nanoparticles. Consequently, different sized gold nanoparticles should be labeled with antibody under optimal pH value and optimal concentrations of antibody. It will be helpful for the application of antibody-labeled gold nanoparticles in the fields of clinic diagnosis, environmental analysis and so on in future.  相似文献   

7.
金纳米颗粒是近年研究的一种热门材料。介绍了金纳米颗粒主要的制备方法,包括化学还原法,两相法,晶种生长法以及模板法,并总结了金纳米粒子在生物医学、传感器、催化剂、电化学等领域的应用进展。  相似文献   

8.
Molecular dynamics simulations are used to probe the structure and stability of alkanethiolate self-assembled monolayers (SAMs) on gold nanoparticles. We observed that the surface of gold nanoparticles becomes highly corrugated by the adsorption of the SAMs. Furthermore, as the temperature is increased, the SAMs dissolve into the gold nanoparticle, creating a liquid mixture at temperatures much lower than the melting temperature of the gold nanoparticle. By analyzing the mechanical and chemical properties of gold nanoparticles at temperatures below the melting point of gold, with different SAM chain lengths and surface coverage properties, we determined that the system is metastable. The model and computational results that provide support for this hypothesis are presented.  相似文献   

9.
Nanometer dimension of citrate-capped gold nanoparticles can be firmly bound with various functionalized polymer-modified glass plate and indium tin oxide (ITO) substrates. Herein we report 3-aminopropyltriethoxysilane, polyvinyl pyridine, polyethylene imines, etc. as binding agents to modify these substrates to stabilize the charged colloidal gold nanoparticles through electrostatic stabilization of gold nanoparticles. When gold nanoparticles pretreated substrate are exposed into the seeding growth solution, the preadsorbed gold nanoparticles grow further and then form nanoislands of gold on glass and ITO substrates. The formation of nanoislands on microscope glass slide and ITO was monitored with UV-visible spectroscopy, cyclic voltammetry, and atomic force microscopy methods. The gold nanoislands and gold nanoparticles pretreated substrates can be used as platform to study the self-assembling behavior of long chain alkanethiols such as C12SH, C16SH, and C18SH. The binding, coverage, and electron transfer characteristics of monolayer assembly on modified gold nanoisland and nanoparticles modified substrates are studied using electrochemical studies. The gold substrates can be prepared by this method, which is simple and reproducible and can be applied to various sensor and electrocatalytic applications.  相似文献   

10.
A new simple concept for the stoichiometrical functionalization of nanoparticles based on free radical polymerization of vinyl protected nanoparticles is presented. To demonstrate this concept 2-bis(4-vinylphenyl)disulfane was synthesized and used in the synthesis of gold nanoparticles, leading to 4-vinylthiophenol functionalized nanoparticles. Simple free radical polymerization of these particles initiated by 4,4'-azobis-(4-cyanopentanoic acid) delivered nanoparticles with a single carboxyl group. These monofunctionalized gold nanoparticles were utilized for chemical preparation of gold nanoparticle dimers as well as for construction of gold nanoparticle arrays via binding to polyallylamine.  相似文献   

11.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

12.
A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.  相似文献   

13.
In this article, innovative applications of amphiphilic triblock and pentablock copolymers in the synthesis of gold nanoparticles are reported. The synthesis of gold nanoparticles is performed using two methods. In the first method, micellar aggregates of block copolymers and AuCl4? ions directly react in water; the nanoparticles obtained by this method are variable in size and are associated with copolymer aggregates. In the second method, two processes take place simultaneously: the aggregation of block copolymers and the reduction of Au (III) by the copolymers to form nanoparticles. In contrast with the first method, in this case, the nanoparticles obtained are located inside the copolymer aggregates. In both methods of synthesis, the block copolymers act simultaneously as reducing and stabilizing agents. To understand the role of copolymer aggregates in the synthesis of nanoparticles, molecular simulation methods are used. The gold nanoparticles, copolymer aggregates, and nanocomposite systems are characterized using transmission electron microscopy and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3069–3079  相似文献   

14.
Homogeneous immunoassays using (red) gold nanoparticles represent an attractive detection scheme because of the option of photometric readout. We have applied oriented immobilization of hen egg immunoglobulin Y (IgY) on gold nanoparticles when developing a homogeneous immunoassay for human IgG. In oriented immobilization, as opposed to random immobilization, the antigen binding capabilities of the antibodies are retained. It is shown that such immunoassay has significantly better sensitivity in comparison with methods based on conventional immobilization of affinity-purified antibodies. It is also shown that hen egg IgY is better suited than rabbit antibodies, because much more antibody can be immobilized on gold nanoparticles without any destabilization, probably because of the more acidic nature of these antibodies. In addition, hen egg IgY can be supplied in higher quantity and can be prepared more easily than IgG from rabbits. Bleeding and slaughtering of animals is not needed. The assay presented here has a wide detection range (30–500?ng?.mL?1) and a limit of detection as low as 30?ng.mL?1 of human IgG.
Figure
Nanoparticles are treated by thiol for formation of monolayer with exposed NH2 groups. IgY molecule is oxidized by periodate for formation of aldehyde group in Fc fragment. Consequent addition of such antibodies to gold nanoparticles results in binding of IgY molecules to gold nanoparticles via Fc fragment providing oriented immobilization.  相似文献   

15.
Gun  Jenny  Rizkov  Dan  Lev  Ovadia  Abouzar  Maryam H.  Poghossian  Arshak  Schöning  Michael J. 《Mikrochimica acta》2009,164(3-4):395-404

EIS (electrolyte-insulator-semiconductor) sensors based on the functionalization of uncoated gold nanoparticles supported on a Si/SiO2 structure are presented. Oxygen plasma etching at moderate power (<200 W) provides a convenient and efficient way to remove organic capping agents from the gold nanoparticles without significant damage. Higher power intensities destroy the linkage between the SiO2 and the gold nanoparticles, and some of the gold nanoparticles are removed from the surface. The flat-band potential shift, i.e. the pH dependence of the gold-coated EIS sensors is similar (33 mV/pH) to the uncoated EIS pH-sensor. Lead, penicillin and glucose sensors were prepared by immobilization of β-cyclodextrin, penicillinase and glucose oxidase by various immobilization techniques.

  相似文献   

16.
A new method of forming stable dispersions of alkanethiol and aromatic thiol stabilized gold nanoparticles in two different lyotropic liquid crystalline mediums, namely, a columnar hexagonal phase made up of a Triton X-100/water system and an inverse columnar hexagonal phase made up of pure AOT, are presented. The dispersions have been characterized using small-angle X-ray scattering (SAXS) and polarizing optical microscopy. Our studies show that the gold nanoparticles are distributed outside the columns formed by both the surfactants. Such dispersions can find applications in the study of nanoparticles as well as in the development of devices based on some unique properties of metal nanoparticles.  相似文献   

17.
Surface ligand molecules enabling gold nanoparticles to disperse in both polar and nonpolar solvents through changes in conformation are presented. Gold nanoparticles coated with alkyl-head-capped PEG derivatives were initially well dispersed in water through exposure of the PEG residue (bent form). When chloroform was added to the aqueous solution of gold nanoparticles, the gold nanoparticles were transferred from an aqueous to a chloroform phase through exposure of the alkyl-head residue (straight form). The conformational change (bent to straight form) of immobilized ligands in response to the polarity of the solvents was supported by NMR analyses and water contact angles.  相似文献   

18.
Nowadays, there is an intensive development of the electric arc discharge method, first proposed in 1922 by T. Svedberg. That method is an effective tool for the synthesis of nanomaterials such as metals, oxides, binary compounds and, in some cases, has undoubted advantages compared to the other methods. In particular, the formation of silver and gold nanoparticles is possible in the absence of any reductants and surfactants. The copper nanostructures synthesis is based on the more cost effective and productive technology compared to the other physical methods. In this article, the main achievements and prospects for the application of the electric discharge method in liquid for the synthesis of the silver, gold and copper nanostructures are presented.  相似文献   

19.
Gold nanoparticles have been employed in biomedicine since the last decade because of their unique optical, electrical and photothermal properties. Present review discusses the microbial synthesis, properties and biomedical applications of gold nanoparticles. Different microbial synthesis strategies used so far for obtaining better yield and stability have been described. It also includes different methods used for the characterization and analysis of gold nanoparticles, viz. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, scanning electron microscopy, ransmission electron microscopy, atomic force microscopy, electron dispersive X ray, X ray photoelectron spectroscopy and cyclic voltametry. The different mechanisms involved in microbial synthesis of gold nanoparticles have been discussed. The information related to applications of microbially synthesized gold nanoparticles and patents on microbial synthesis of gold nanoparticles has been summarized.  相似文献   

20.
Gold nanoparticles for the development of clinical diagnosis methods   总被引:2,自引:0,他引:2  
The impact of advances in nanotechnology is particularly relevant in biodiagnostics, where nanoparticle-based assays have been developed for specific detection of bioanalytes of clinical interest. Gold nanoparticles show easily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms. Modulation of these physicochemical properties can be easily achieved by adequate synthetic strategies and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics. The surface of gold nanoparticles can be tailored by ligand functionalization to selectively bind biomarkers. Thiol-linking of DNA and chemical functionalization of gold nanoparticles for specific protein/antibody binding are the most common approaches. Simple and inexpensive methods based on these bio-nanoprobes were initially applied for detection of specific DNA sequences and are presently being expanded to clinical diagnosis. Figure Colorimetric DNA/RNA detection using salt induced aggregation of AuNP-DNA nanoprobes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号