首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work a system of two parabolic singularly perturbed equations of reaction–diffusion type is considered. The asymptotic behaviour of the solution and its partial derivatives is given. A decomposition of the solution in its regular and singular parts has been used for the asymptotic analysis of the spatial derivatives. To approximate the solution we consider the implicit Euler method for time stepping and the central difference scheme for spatial discretization on a special piecewise uniform Shishkin mesh. We prove that this scheme is uniformly convergent, with respect to the diffusion parameters, having first-order convergence in time and almost second-order convergence in space, in the discrete maximum norm. Numerical experiments illustrate the order of convergence proved theoretically.  相似文献   

2.
Robustness of numerical methods for multiphase flow problems in porous media is important for development of methods to be used in a wide range of applications. Here, we discuss monotonicity for a simplified problem of single-phase flow, but where the simulation grids and media are allowed to be general, posing challenges to control-volume methods. We discuss discrete formulations of the maximum principle and derive sufficient criteria for discrete monotonicity for arbitrary nine-point control-volume discretizations for conforming quadrilateral grids in 2D. These criteria are less restrictive than the M-matrix property. It is shown that it is impossible to construct nine-point methods which unconditionally satisfy the monotonicity criteria when the discretization satisfies local conservation and exact reproduction of linear potential fields. Numerical examples are presented which show the validity of the criteria for monotonicity. Further, the impact of nonmonotonicity is studied. Different behavior for different discretization methods is illuminated, and simple ideas are presented for improvement in terms of monotonicity.  相似文献   

3.
Summary. The boundary element method (BEM) is of advantage in many applications including far-field computations in magnetostatics and solid mechanics as well as accurate computations of singularities. Since the numerical approximation is essentially reduced to the boundary of the domain under consideration, the mesh generation and handling is simpler than, for example, in a finite element discretization of the domain. In this paper, we discuss fast solution techniques for the linear systems of equations obtained by the BEM (BE-equations) utilizing the non-overlapping domain decomposition (DD). We study parallel algorithms for solving large scale Galerkin BE–equations approximating linear potential problems in plane, bounded domains with piecewise homogeneous material properties. We give an elementary spectral equivalence analysis of the BEM Schur complement that provides the tool for constructing and analysing appropriate preconditioners. Finally, we present numerical results obtained on a massively parallel machine using up to 128 processors, and we sketch further applications to elasticity problems and to the coupling of the finite element method (FEM) with the boundary element method. As shown theoretically and confirmed by the numerical experiments, the methods are of algebraic complexity and of high parallel efficiency, where denotes the usual discretization parameter. Received August 28, 1996 / Revised version received March 10, 1997  相似文献   

4.
Summary. In this paper we introduce new local a-posteriori error indicators for the Galerkin discretization of three-dimensional boundary integral equations. These error indicators are efficient and reliable for a wide class of integral operators, in particular for operators of negative order. They are based on local norms of the computable residual and can be used for controlling the adaptive refinement. The proofs of efficiency and reliability are based on the result that the Aronszajn-Slobodeckij norm (given by a double integral for a non-integer ) is localizable for certain functions. Neither inverse estimates nor saturation properties are needed. In this paper, we extend the two-dimensional results of a previous paper to the three-dimensional case. Received March 20, 2000 / Published online November 15, 2001  相似文献   

5.
Summary. This paper is concerned with a high order convergent discretization for the semilinear reaction-diffusion problem: , for , subject to , where . We assume that on , which guarantees uniqueness of a solution to the problem. Asymptotic properties of this solution are discussed. We consider a polynomial-based three-point difference scheme on a simple piecewise equidistant mesh of Shishkin type. Existence and local uniqueness of a solution to the scheme are analysed. We prove that the scheme is almost fourth order accurate in the discrete maximum norm, uniformly in the perturbation parameter . We present numerical results in support of this result. Received February 25, 1994  相似文献   

6.
This paper is concerned with obtaining the approximate solution for VolterraHammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function ω(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L~2 norm and L~∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.  相似文献   

7.
We introduce and analyse a finite volume method for the discretization of elliptic boundary value problems in . The method is based on nonuniform triangulations with piecewise linear nonconforming spaces. We prove optimal order error estimates in the –norm and a mesh dependent –norm. Received September 10, 1997 / Revised version received March 18, 1998  相似文献   

8.
Summary. This paper is concerned with the convergence analysis of robust multigrid methods for convection-diffusion problems. We consider a finite difference discretization of a 2D model convection-diffusion problem with constant coefficients and Dirichlet boundary conditions. For the approximate solution of this discrete problem a multigrid method based on semicoarsening, matrix-dependent prolongation and restriction and line smoothers is applied. For a multigrid W-cycle we prove an upper bound for the contraction number in the euclidean norm which is smaller than one and independent of the mesh size and the diffusion/convection ratio. For the contraction number of a multigrid V-cycle a bound is proved which is uniform for a class of convection-dominated problems. The analysis is based on linear algebra arguments only. Received April 26, 2000 / Published online June 20, 2001  相似文献   

9.
Summary For the Laplace equation with Signorini boundary conditions two equivalent boundary variational inequality formulations are deduced. We investigate the discretization by a boundary element Galerkin method and obtain quasi-optimal asymptotic error estimates in the underlying Sobolev spaces. An algorithm based on the decomposition-coordination method is used to solve the discretized problems. Numerical examples confirm the predicted rate of convergence.  相似文献   

10.
Summary. The proposed method is based on an additive decomposition of the differential operator and the subsequent fitted discretization of the resulting components. For standard situations, the derived stability and error estimates in the energy norm qualitatively coincide with well-known estimates. In the case of small diffusion, a uniform error estimate with reduced order is obtained. Received August 7, 1997 / Revised version received July 15, 1998 / Published online December 6, 1999  相似文献   

11.
Summary. An elliptic boundary value problem in the interior or exterior of a polygon is transformed into an equivalent first kind boundary integral equation. Its Galerkin discretization with degrees of freedom on the boundary with spline wavelets as basis functions is analyzed. A truncation strategy is presented which allows to reduce the number of nonzero elements in the stiffness matrix from to entries. The condition numbers are bounded independently of the meshwidth. It is proved that the compressed scheme thus obtained yields in operations approximate solutions with the same asymptotic convergence rates as the full Galerkin scheme in the boundary energy norm as well as in interior points. Numerical examples show the asymptotic error analysis to be valid already for moderate values of . Received March 12, 1994 / Revised version received January 9, 1995  相似文献   

12.
We survey multilevel iterative methods applied for solving large sparse systems with matrices, which depend on a level parameter, such as arise by the discretization of boundary value problems for partial differential equations when successive refinements of an initial discretization mesh is used to construct a sequence of nested difference or finite element meshes.We discuss various two-level (two-grid) preconditioning techniques, including some for nonsymmetric problems. The generalization of these techniques to the multilevel case is a nontrivial task. We emphasize several ways this can be done including classical multigrid methods and a recently proposed algebraic multilevel preconditioning method. Conditions for which the methods have an optimal order of computational complexity are presented.On leave from the Institute of Mathematics, and Center for Informatics and Computer Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria. The research of the second author reported here was partly supported by the Stichting Mathematisch Centrum, Amsterdam.  相似文献   

13.
We consider a stationary Stokes problem with a piecewise constant viscosity coefficient. For the variational formulation of this problem we prove a well-posedness result in which the constants are uniform with respect to the jump in the viscosity coefficient. We apply a standard discretization with a pair of LBB stable finite element spaces. The main result of the paper is an infsup result for the discrete problem that is uniform with respect to the jump in the viscosity coefficient. From this we derive a robust estimate for the discretization error. We prove that the mass matrix with respect to some suitable scalar product yields a robust preconditioner for the Schur complement. Results of numerical experiments are presented that illustrate this robustness property. This author was supported by the German Research Foundation through the guest program of SFB 540  相似文献   

14.
On the multi-level splitting of finite element spaces   总被引:13,自引:0,他引:13  
Summary In this paper we analyze the condition number of the stiffness matrices arising in the discretization of selfadjoint and positive definite plane elliptic boundary value problems of second order by finite element methods when using hierarchical bases of the finite element spaces instead of the usual nodal bases. We show that the condition number of such a stiffness matrix behaves like O((log )2) where is the condition number of the stiffness matrix with respect to a nodal basis. In the case of a triangulation with uniform mesh sizeh this means that the stiffness matrix with respect to a hierarchical basis of the finite element space has a condition number behaving like instead of for a nodal basis. The proofs of our theorems do not need any regularity properties of neither the continuous problem nor its discretization. Especially we do not need the quasiuniformity of the employed triangulations. As the representation of a finite element function with respect to a hierarchical basis can be converted very easily and quickly to its representation with respect to a nodal basis, our results mean that the method of conjugate gradients needs onlyO(log n) steps andO(n log n) computer operations to reduce the energy norm of the error by a given factor if one uses hierarchical bases or related preconditioning procedures. Heren denotes the dimension of the finite element space and of the discrete linear problem to be solved.  相似文献   

15.
Summary. We consider a second-order elliptic equation with discontinuous or anisotropic coefficients in a bounded two- or three dimensional domain, and its finite-element discretization. The aim of this paper is to prove some a priori and a posteriori error estimates in an appropriate norm, which are independent of the variation of the coefficients. Received February 5, 1999 / Published online March 16, 2000  相似文献   

16.
Summary In this paper, we study some additive Schwarz methods (ASM) for thep-version finite element method. We consider linear, scalar, self adjoint, second order elliptic problems and quadrilateral elements in the finite element discretization. We prove a constant bound independent of the degreep and the number of subdomainsN, for the condition number of the ASM iteration operator. This optimal result is obtained first in dimension two. It is then generalized to dimensionn and to a variant of the method on the interface. Numerical experiments confirming these results are reported. As is the case for other additive Schwarz methods, our algorithms are highly parallel and scalable.This work was supported in part by the Applied Math. Sci. Program of the U.S. Department of Energy under contract DE-FG02-88ER25053 and, in part, by the National Science Foundation under Grant NSF-CCR-9204255  相似文献   

17.
Preconditioned conjugate gradient method is applied for solving linear systemsAx=b where the matrixA is the discretization matrix of second-order elliptic operators. In this paper, we consider the construction of the trnasform based preconditioner from the viewpoint of image compression. Given a smooth image, a major portion of the energy is concentrated in the low frequency regions after image transformation. We can view the matrixA as an image and construct the transform based preconditioner by using the low frequency components of the transformed matrix. It is our hope that the smooth coefficients of the given elliptic operator can be approximated well by the low-rank matrix. Numerical results are reported to show the effectiveness of the preconditioning strategy. Some theoretical results about the properties of our proposed preconditioners and the condition number of the preconditioned matrices are discussed.  相似文献   

18.
General finite volume approximations in two and three space dimensions are studied for the discretization of interior and boundary obstacle problems with mixed boundary conditions. First order convergence of the finite volume (box) solution is shown in the energy norm. Based on a discrete maximum principle there are proposed two penalization techniques for the solution of the finite volume inequalities. By coupling of discretization and penalty parameters the overall error is analyzed. The iterative solution of the penalty problems is discussed. Finally, results of numerical experiments are presented to illustrate the convergence behaviour between the exact, the box and the penalty solutions.  相似文献   

19.
In this work we present an adaptive strategy (based on an a posteriori error estimator) for a stabilized finite element method for the Stokes problem, with and without a reaction term. The hierarchical type estimator is based on the solution of local problems posed on appropriate finite dimensional spaces of bubble-like functions. An equivalence result between the norm of the finite element error and the estimator is given, where the dependence of the constants on the physics of the problem is explicited. Several numerical results confirming both the theoretical results and the good performance of the estimator are given.  相似文献   

20.
We present a novel multigrid-continuation method for treating parameter-dependent problems. The proposed algorithm which can be flexibly implemented is a generalization of the two-grid discretization schemes [C.-S. Chien, B.-W. Jeng, A two-grid discretization scheme for semilinear elliptic eigenvalue problems, SIAM J. Sci. Comput. 27 (2006) 1287-1304]. That is, approximating points on a solution curve do not necessarily lie on the same fine grid. We apply the algorithm to compute energy levels and superfluid densities of Bose-Einstein condensates (BEC) in a periodic potential. Both positive and negative scattering lengths are considered in our numerical experiments. For positive scattering length, if the chemical potential is large enough, and the domain is properly chosen, the results show that the number of peaks of the first few energy states of the 2D BEC in a periodic potential depends on the wave number of the periodic potential. Moreover, for bright solitons the number of peaks of the ground state solutions is and , where the periodic potential is expressed in terms of the sine or the cosine functions, respectively. However, these formulae do not hold if the scattering length is negative. The numerical study is extended to the two-component, 1D and 2D BEC in a periodic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号