首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Phase behavior of hydroxypropylcellulose (HPC) in a mixed solvent of glycerol and water was investigated by two different rheological methods: rheooptical birefringence measurement in an elongational flow field and viscometric measurement in a shear flow field. The association process of the HPC chain during phase separation observed by the elongational flow birefringence method was also investigated by the shear viscometric method. The temperature dependence of chain rigidity was determined by measuring the intrinsic viscosity, and change in the conformation was investigated by observing elongational flow birefringence over the temperature range from the one‐phase to inside a phase boundary. The results focus on the molecular process of phase separation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1976–1986, 2001  相似文献   

2.
In this study, the phase behavior, structure and properties of systems composed of the cationic, cellulose-based polycation JR 400 and the anionic surfactants sodium dodecylbenzenesulfonate (SDBS) or sodium dodecylethoxysulfate (SDES), mainly in the semidilute regime, were examined. This system shows the interesting feature of a very large viscosity increase by nearly 4 orders of magnitude as compared to the pure polymer solution already at very low concentrations of 1 wt%. By using rheology, dynamic light scattering (DLS), and small-angle neutron scattering (SANS), we are able to deduce systematic correlations between the molecular composition of the systems (characterized by the charge ratio Z=[+(polymer)]/[?(surfactant)]), their structural organization and the resulting macroscopic flow behavior. Mixtures in the semidilute regime with an excess of polycation charge form highly viscous network structures containing rodlike aggregates composed of surfactant and polyelectrolyte that are interconnected by the long JR 400 chains. Viscosity and storage modulus follow scaling laws as a function of surfactant concentration (η~c(s)(4); G(0)~c(s)(1.5)) and the very pronounced viscosity increase mainly arises from the strongly enhanced structural relaxation time of the systems. In contrast, mixtures with excess surfactant charges form solutions with viscosities even below those of the pure polymer solution. The combination of SANS, DLS, and rheology shows that the structural, dynamical, and rheological properties of these oppositely charged polyelectrolyte/surfactant systems can be controlled in a systematic fashion by appropriately choosing the systems composition.  相似文献   

3.
This paper reports results of quantitative comparison between dynamic structure factors obtained experimentally and those calculated by using the Doi and Onuki (DO) theory for semidilute polymer solutions. The authors obtained the dynamic structure factors with dynamic light scattering (DLS) experiment while the dynamic structure factors were calculated by using DO theory with osmotic compressibility, viscoelastic relaxation function, and friction coefficient which are obtained independently of DLS experiment. Calculated dynamic structure factors agree with experimental ones well and can express the q-dependent fast modes and the q-insensitive slow mode which experimental ones show. The authors estimated the characteristic parameters, interdiffusion coefficient and cooperative diffusion coefficient, from experimental and calculated results by using the procedure proposed by Einaga and Fujita [Polymer 40, 565 (1999)]. The estimated parameters for the DLS experiment agree with those for the calculation. These agreements in dynamic structure factors and the parameters indicate that DO theory can describe well the relaxation processes of semidilute polymer solutions.  相似文献   

4.
Xu D  Craig SL 《Macromolecules》2011,44(18):7478-7488
The large amplitude oscillatory shear behavior of metallo-supramolecular polymer networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) solution is reported. The influence of scanning frequency, dissociation rate of cross-linkers, concentration of cross-linkers, and concentration of PVP solution on the large amplitude oscillatory shear behavior is explored. In semidilute unentangled PVP solutions, above a critical scanning frequency, strain hardening of both storage moduli and loss moduli is observed. In the semidilute entangled regime of PVP solution, however, strain softening is observed for samples with faster cross-linkers (k(d) ~ 1450 s(-1)), whereas strain hardening is observed for samples with slower cross-linkers (k(d) ~ 17 s(-1)). The mechanism of strain hardening is attributed primarily to a strain-induced increase in the number of elastically active chains, with possible contributions from non-Gaussian stretching of polymer chains at strains approaching network fracture. The divergent strain softening of samples with faster cross-linkers in semidilute entangled PVP solutions, relative to the strain hardening of samples with slower cross-linkers, is consistent with observed shear thinning/shear thickening behavior reported previously and is attributed to the fact that the average time that a cross-linker remains detached is too short to permit the local relaxation of polymer chain segments that is necessary for a net conversion of elastically inactive to elastically active cross-linkers. These and other observations paint a picture in which strain softening and shear thinning arise from the same set of molecular mechanisms, conceptually uniting the two nonlinear responses for this system.  相似文献   

5.
The structure and dynamics of a supramolecular polymer formed by a bisurea-type compound, 2,4-bis(2-ethylhexylureido)toluene (EHUT), in an apolar solvent, n-dodecane (C12), were examined in detail. The EHUT/C12 organo-gel system forms long, dynamic chain-like supramolecular polymers, which lead to an entangled network showing remarkable viscoelastic behavior with two major relaxation modes. A slow relaxation mode with an approximately constant relaxation time, tauS, was observed in a flow region and the other, fast, relaxation mode with a time tauF1 (相似文献   

6.
The effect of irradiation, in the wavelength range of 310-800 nm, on aqueous solutions (pH = 7.4) of alginate in the presence of the photosensitizer riboflavin (RF) has been investigated with the aid of dynamic light scattering (DLS). Under aerobic conditions light irradiation of RF causes scission of the polymer chains which affects the polymer dynamics. The time correlation data obtained from DLS experiments showed at all conditions the existence of two relaxation modes: one single exponential at short times, followed by a stretched exponential at longer times. The slow relaxation time revealed, over the whole considered concentration range, lower values for the alginate/RF system, whereas no effect of photochemical degradation was observed for the fast relaxation time in the semidilute regime. The results suggest that the photochemically induced fragmentation of alginate affects the slow relaxation mode, associated with disengagement relaxation of individual chains or cluster relaxation, in a similar way as the zero-shear viscosity. These findings provide detailed insight into the dynamics of the polymer matrix, and this knowledge can be useful in the context of controlled-release delivery of drugs. The chemical units of alginate (M = mannuronic acid and G = guluronic acid).  相似文献   

7.
The mechanical and rheo-optical properties of a styrene–butadiene–styrene block copolymer of a given chemical composition are dependent upon the morphology of the polymer as affected by the solvent system from which a polymer film is cast. Films cast from methyl ethyl ketone and from toluene are compared. Properties found to differ are the stress–strain curve, the birefringence–strain curve, stress relaxation birefringence relaxation, and the dynamic mechanical spectra.  相似文献   

8.
We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.  相似文献   

9.
Using equilibrium and nonequilibrium molecular dynamics simulations, we studied the equilibrium and rheological properties of dilute and semidilute solutions of head-to-tail associating polymers. In our simulation model, a spontaneous complementary reversible association between the donor and the acceptor groups at the ends of oligomers was achieved by introducing a combination of truncated pseudo-Coulombic attractive potential and Lennard Jones repulsive potential between donor, acceptor, and neighboring groups. We have calculated the equilibrium properties of supramolecular polymers, such as the ring/chain equilibrium, average molecular weight, and molecular weight distribution of self-assembled chains and rings, which all agree well with previous analytical and computer modeling results. We have investigated shear thinning of solutions of 8- and 20-bead associating oligomers with different association energies at different temperatures and oligomer volume fractions. All reduced viscosity data for a given oligomer length can be collapsed into one master curve, exhibiting two power-law regions of shear-thinning behavior with an exponent of -0.55 at intermediate ranges of the reduced shear rate β and -0.8 (or -0.9) at larger shear rates. The equilibrium viscosity of supramolecular solutions with different oligomer lengths and associating energies is found to obey a power-law scaling dependence on oligomer volume fraction with an exponent of 1.5, in agreement with the experimental observations for several dilute or semidilute solutions of supramolecular polymers. This implies that dilute and semidilute supramolecular polymer solutions exhibit high polydispersity but may not be sufficiently entangled to follow the reptation mechanism of relaxation.  相似文献   

10.
Photon correlation spectroscopy in the polarized geometry has been used to systematically investigate the complex dynamics of a highly concentrated entangled polymer solution in a nominally good solvent, poly(butylacrylate) in dioxane. In addition to the well known fast cooperative diffusion process, a slow virtuallyq-independent mode is detected, whereq is the scattering wavevector, in agreement with previous experimental works on semidilute solutions. This mode is attributed to the viscoelastic nature of the transient physical network, formed by the entanglements, which relaxes its elastic stress induced by the concentration fluctuations, as confirmed by small amplitude oscillatory shear measurements; the latter reveal a terminal relaxation time comparable to the characteristic time of the slow relaxation process. Results, especially in terms of concentration and temperature dependence, are evaluated and discussed in view of the existing theoretical treatments in the field, predicting the existence of the slow viscoelastic relaxation. The relationship between dynamic light scattering and mechanical spectroscopy is established.  相似文献   

11.
The dc component Δn of the electric birefringence of poly(γ-benzyl-L -glutamate) in m-cresol is measured under an ac electric field at frequencies from 0.5 Hz to 200 kHz for solutions covering the dilute and semidilute regions. The dispersion curve indicates that at low frequencies Δn decreases with increasing frequency (low-frequency relaxation). For high-molecular-weight polymers at high concentration, Δn becomes negative at high frequency and its absolute value decreases with further increase in frequency (high-frequency relaxation). A unified theory for the two relaxations is developed on the basis of a model in which, in the semidilute regime, the rodlike polymer is confined in a cage formed by neighboring polymers and the lifetime of the cage lies between relaxation times of the two relaxations. The low-frequency relaxation is ascribed to end-over-end rotation of the polymer and the high-frequency relaxation to the rotation within a limited angle in the cage. The dependences of relaxation parameters on polymer concentration and molecular weight are reasonably explained by the theory.  相似文献   

12.
The expressions for polymer self-diffusion in semidilute solutions, theoretically derived from the reptation mechanism, the blob concept and scaling considerations, are discussed and compared against experimental data from the authors' investigations and the literature. In the nonentangled (from viscoelastic data) semidilute solution, the experimentally observed concentration and molar mass exponents are in fair agreement with those derived theoretically. However, a quantitative estimation shows that the experiments cannot be explained by reptation. Experiments with polymer mixtures also give strong evidence against reptation. It is concluded, that in the nonentangled semidilute solution, the polymer self-diffusion is more complicated than simple reptation. This is also supported by recently observed long-range density fluctuations or cluster formation in this concentration region detected by scattering techniques and NMR-PFGT. In the entangled semidilute solution, the self-diffusion data are in accordance with the reptation mechanism; reptation being within a tube having approximately 20 blobs between entanglements.  相似文献   

13.
Dynamic light scattering (DLS) measurements were carried out on aqueous solutions of low-methoxyl pectin at different temperatures and polymer concentration. Low temperature and increased polymer concentration promote the formation of multichain aggregates. The time correlation data obtained from the DLS experiments revealed, for all polymer solutions, the existence of two relaxation modes, one single exponential at short times followed by a stretched exponential at longer times. In the semidilute regime, a temperature reduction induced enhanced chain associations in the solutions with high values of the slow relaxation time and a strong wave vector dependence of the slow mode. These features could be rationalized in the framework of the coupling model of Ngai. At low temperatures (10 °C), gelation occurs in the semidilute regime and a transparent gel is formed. In this state, the profile of the correlation function changes and nonergodic signs are observed. The conjecture is that the association complexes and the gel network are stabilized through intermolecular hydrogen bonds, which are broken-up at higher temperatures. The hydrogen-bonded structures are formed in a process where the polymer chains have been “zipped” together in a cooperative manner.  相似文献   

14.
S. J. Picken 《Liquid crystals》2013,40(5):1635-1643
Clearing temperatures of solutions of poly(4-4′-benzanilidylene-terephthalamide) in concentrated sulphuric acid are presented as a function of polymer concentration and average molecular weight. The orientational order parameter <P 2> is obtained from birefringence measurements. The experimental results are explained by a mean-field type theory similar to the Maier-Saupe model for thermotropic liquid crystals. Molecular flexibility, concentration and molecular weight are taken into account by using simple scaling factors. The birefringence induced by shear flow in an isotropic solution of poly(para-phenylene-terephthalamide) shows a strong pretransitional behaviour. This indicates the occurrence of a flow-induced phase transition.  相似文献   

15.
Allylchitosan and propylchitosan with different degrees of substitution were prepared on the basis of chitosan from shrimp chitin. The dynamics of semidilute electrolytic polymer solutions of chitosan derivatives in acetic acid was studied by measuring birefringence in extensional and shear flows and by means of viscometry. The optical shear coefficient and critical velocity gradients corresponding to the loss of stability of the macromolecular coil in extensional flow were found. The chain relaxation times depending on the polyelectrolyte concentration and ionic strength of solution were determined.  相似文献   

16.
The dynamics of isolated high molecular weight (MH) polymer chains dissolved in a nonentangled semidilute solution of a low molecular weight (ML) polymer were investigated by monitoring the elongational flow birefringence. Because of its nonentangled nature, a low molecular weight matrix polymer solution is regarded as a pure solvent (a binary pseudo-solvent). A ternary solution consisting of a small amount of a high molecular weight probe polymer and the binary pseudo-solvent is effectively a dilute solution of the probe polymer. It was observed that the birefringence from the orientation and/or stretching of the probe polymer chains starts to increase rather abruptly at a certain critical strain rate, , and the spatial birefringence pattern is localized along the elongation axis, characteristics that are reminiscent of the coil-stretch transition of flexible polymer chains in a simple dilute solution. The relaxation time for the chain extension, el, defined as the reciprocal of the critical strain rate , was determined at various temperatures, matrix polymer concentrations cL, and test chain molecular weights MH. It was found that el varied with molecular weight as el~MHa , with a ranging from 1.3 to 1.8, which is roughly consistent with the molecular weight dependence of the non-free-draining Zimm relaxation time. A scaled relaxation time elkT/, which can be used to estimate the radius of gyration Rg of the probe polymer, decreased with increasing cL, indicating contraction of the high molecular weight polymer due to a screening of the excluded volume effect caused by the matrix polymer in the pseudo-solvent.  相似文献   

17.
 The reentrant behavior of Poly(vinyl alcohol) (PVA)–borax aqueous semidilute solutions with a PVA concentration of 20 g/l and borax concentrations varies from 0.0 to 0.20 M was investigated using dynamic light scattering (DLS) and dynamic viscoelastic measurements. Two (fast and slow modes) and three (fast, middle, and slow) relaxation modes of PVA semidilute aqueous solutions without and with the presence of borax, respectively, were observed from DLS measurements. The fast and middle relaxation modes were q 2-dependent (q is the scattering vector) characteristic of diffusive behavior; however, the slow modes were q 3-dependent, characteristic of intraparticle dynamics. The experimental results showed that the slow relaxation mode dominates the DLS relaxation. The DLS slow mode relaxation time, τs, and the viscoelastic modulus G′(ω) and G′′(ω) data had a similar trend and demonstrated reentrant behavior as the borax concentration was increased from 0.0 to 0.20 M, i.e. τs, G′(ω), and G′′(ω) fluctuated with increasing borax concentration. The excluded-volume effect of polymers, charge repulsion among borate ions bound on PVA molecules, and intermolecular cross-linking didiol–borate complexation caused an expansion of the polymer chain; however, the screening effect of free Na+ ions on the negative charge of the borate ions bound on PVA and intramolecular cross-linking didiol–borate complexation led to a shrinkage of the polymer chain. The reentrant behavior was the consequence of the balance between expansion and shrinkage of the PVA–borate complex. Received: 26 March 1999/Accepted in revised form: 3 September 1999  相似文献   

18.
Two new water soluble dendronized polymers (PLn) from acrylate Behera amine monomer of different molecular weights were successfully synthesized. The polymers were characterized by FTIR, NMR, GPC and DLS. Both GPC and DLS results indicated that these PLn have a remarkable tendency to form aggregates in solution that lead to apparent molecular weights that are much higher than their theoretical values, as well as large diameters in solution. However, the addition of any PLn to water did not cause any increase in viscosity up to concentrations of 1000 ppm. The possible interactions of PLn with the cationic surfactant CTAT were explored by solution rheometry. A synergistic viscosity enhancement was found by adding small amounts of dendronized PLn polymers to a CTAT solution composed of entangled worm-like micelles. The highest association tendency with CTAT was found for PL1 at the maximum polymer concentration before phase separation (i.e., 100 ppm). The solution viscosity at low-shear rates could be increased by an order of magnitude upon addition of 100 ppm of PL1 to a 20mM CTAT solution. For this mixture, the fluid obtained was highly structured and exhibited only shear thinning behavior from the smallest shear rates employed. These PL1/CTAT mixtures exhibited an improved elastic character (as determined by dynamic rheometry) that translated in a much longer value of the cross-over relaxation time and a pronounced thixotropic behavior which are indicative of a strong intermolecular interaction. In the case of the polymer with a higher theoretical molecular weight, PL2, its association with CTAT leads to an extraordinary doubling of solution viscosity with just 0.25 ppm polymer addition to a 20mM CTAT solution. However, such synergistic viscosity enhancement saturated at rather low concentrations (25 ppm) indicating an apparent lower solubility as compared to PL1, a fact that may be related to its higher molecular weight.  相似文献   

19.
Simultaneous birefringence and elongational viscosity measurements were carried out on molten commercial grade, low-density polyethylenes during simple elongational flow at constant strain rate and constant temperature. The birefringence increased with time during constant strain rate elongation. The increase in birefringence was a linear function of elongational stress throughout whole elongation, but the elongational viscosity increased in two stages. The increase in elongational viscosity can be divided into linear viscoelastic and nonlnear viscoelastic regions. The linear region appeared at small strain and the nonlinear region appeared at strain greater than 0.7. The elongational viscosity in the nonlinear region increased much more rapidly than that in the linear region. The Gaussian approximation, which is commonly used in molecular models, could be used for the transient elongational flow. A constant stress-optical coefficient C = 1.3 × 10?10 cm2/dyn was obtained for all the elongational experiments, independent of strain rate (0.002-0.2s?1). The stress-optical coefficients were weakly dependent on temperature, as predicted by the theory of rubber elasticity.  相似文献   

20.
The formation of associative networks in semidilute aqueous solutions of hydrophobically modified hydroxyethylcellulose (HM-HEC) is dependent on intermolecular hydrophobic interactions. Addition of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) monomers to the system provides decoupling of these associations via inclusion complex formation with the polymer hydrophobic tails. Results from viscosity, polymer NMR self-diffusion, and dynamic light scattering (DLS) measurements show that the hydrophobic interactions in HM-HEC solutions are effectively suppressed when the level of HP-beta-CD addition increases. Small-angle neutron scattering (SANS) results reveal that the large-scale association complexes in HM-HEC solutions are strongly diminished when the concentration of HP-beta-CD rises. The time correlation data obtained from the DLS experiments unveiled the existence of two relaxation modes: one single exponential at short times followed by a stretched exponential at longer times. The fast mode is always diffusive, whereas the slow mode exhibits progressively stronger wavevector dependence as the intensity of the hydrophobic interactions increases. This feature, as well as the accompanying drop of the stretched exponential beta as the HP-beta-CD concentration decreases, is attributed to enhanced hydrophobic interactions and can be well rationalized in the framework of the coupling model of Ngai.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号