首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe capillary zone electrophoresis (CZE) with transient isotachophoresis (ITP) for the determination of low concentrations of nitrite and nitrate ions in seawater. Bromide-free artificial seawater was adopted as background electrolyte (BGE) to eliminate the interference of high concentrations of salts in seawater. To reverse the electroosmotic flow (EOF), 3 mM cetyltrimethylammonium chloride (CTAC) was added to the BGE. High concentrations of chlorate were added to sample solutions as the terminating ion to generate the ITP process before the CZE separation. In general, the stacking effect increased with increasing amounts of chlorate injected into the capillary. The limits of detection (LODs) for nitrite and nitrate were 0.063 and 0.033 mg/L when the chlorate concentration was 600 and 200 mM, respectively; these were half of those obtained by CZE without the transient ITP. The LODs were obtained at a signal to noise ratio (S/N) of 3. The relative standard deviations (RSD, n = 10) of the peak areas for these ions were 3.2 and 2.9%. The RSDs of peak heights for these ions were 1.6 and 2.1%. The RSDs of migration times for these ions were 0.67 and 0.46%.  相似文献   

2.
We describe an application of capillary zone electrophoresis (CZE) with transient isotachophoresis (ITP) as the on-line concentration procedure for the determination of iodide in seawater. The effective mobility of iodide was decreased by the addition of 10 mM cetyltrimethylammonium chloride (CTAC) to an artificial seawater background electrolyte (BGE) so that transient ITP functioned and iodide was separated from other coexisting anions such as bromide, nitrite, and nitrate in seawater samples. After sample injection, 600 mM acetate was separately injected into the capillary as the terminating ion to generate transient ITP. The limit of detection (LOD) for iodide was 3.0 microg/L. The LOD was obtained at a signal-to-noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area, peak height, and migration time for iodide were 2.9, 2.1, and 0.6%. The proposed method was applied to the determination of iodide in seawater collected around the Osaka Bay. The results obtained by use of the calibration graph were agreed with those obtained by the addition of the standard solutions for iodide.  相似文献   

3.
The principle of an on-line preconcentration method for capillary zone electrophoresis (CZE) named electrokinetic supercharging (EKS), is described and based on computer simulation the preconcentration behavior of the method is discussed. EKS is an electrokinetic injection method with transient isotachophoretic process, is a powerful preconcentration technique for the analysis of dilute samples. After filling the separation capillary with supporting electrolyte, an appropriate amount of a leading electrolyte was filled and the electrokinetic injection was started. After a while, terminating electrolyte was filled subsequently and migration current was applied. This procedure enabled the introduction of a large amount of sample components from a dilute sample without deteriorating separation. Computer simulation of the electrokinetic injection revealed that EKS was effective for the preconcentration of analytes with wide mobility ranges by proper choice of transient isotachophoresis (ITP) system and electroosmotic flow (EOF) should be suppressed to increase injectable amount of analytes under constant voltage mode. A test mixture of rare-earth chlorides was used to demonstrate the uses of EKS-CZE. When a 100 microL sample was used, the low limit of detectable concentration was 0.3 microg/L (1.8 nM for Er), which was comparable or even better than that of ion chromatography and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

4.
Five flavonoids (hyperoside, isoquercitrin, quercitrin, quercetin and rutin) were separated and determined in extracts of Hypericum perforatum leaves or flowers by capillary zone electrophoresis (CZE) with isotachophoretic (ITP) sample pre-treatment using on-line column coupling configuration. The background electrolyte (BGE) used in the CZE step was different from the leading and terminating ITP electrolytes but all the electrolytes contained 20% (v/v) of methanol. The optimal leading electrolyte was 10 mM HCl of pH* approximately 7.2 (adjusted with Tris) and the terminating electrolyte was 50 mM H3BO3 of pH* approximately 8.2 (adjusted with barium hydroxide). This operational system allowed to concentrate and pre-separate selectively the flavonoid fraction from other plant constituents before the introduction of the flavonoids into the CZE capillary. The BGE for the CZE step was 50 mM Tris buffer of pH* approximately 8.75 containing 25 mM N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid as co-ion and 55 mM H3BO3 as complex-forming agent. The ITP-CZE method with spectrophotometric detection at 254 nm was suitable for the quantitation of the flavonoids in real natural samples; kaempferol was used as internal standard. The limit of detection for quercetin-3-O-glycosides was 100 ng ml(-1) and calibration curves were rectilinear in the range 1-10 microg ml (-1) for most of the analytes. The RSD values ranged between 0.9 and 2.7% (n=3) when determining approximately 0.07-1.2% of the individual flavonoids in dried medicinal plants.  相似文献   

5.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.  相似文献   

6.
We have examined transient isotachophoresis (ITP) conditions, e.g. the nature of the terminating ion, its concentration, and the injection procedure, to improve the limit of detection (LOD) for determination of nitrite and nitrate in seawater by capillary zone electrophoresis (CZE). Artificial seawater containing 3.0 mmol L(-1) cetyltrimethylammonium chloride (CTAC) was used as background electrolyte (BGE). After sample injection 600 mmol L(-1) acetate was separately injected into the capillary as the terminating ion for transient ITP. The LOD for nitrite and nitrate, obtained at a signal-to-noise ratio (S/N) of 3, were 15 and 7.0 microg L(-1) (as nitrogen), respectively. Relative standard deviations (RSD) of peak area for nitrite and nitrate were 7.3 and 0.8%, respectively, and the RSD of peak height were 5.7 and 1.2%, respectively, when the concentrations of nitrite and nitrate were 0.05 and 0.25 mg L(-1). The RSD of migration time for these ions was 0.2%. The proposed method was applied to the determination of nitrite and nitrate in seawater samples. The results for nitrite were nearly in agreement with those obtained by naphthylethylenediamine spectrophotometric analysis (SPA; correlation coefficient 0.9041).  相似文献   

7.
林秀丽  李关宾  主沉浮  吴培  关亚风 《色谱》2001,19(2):109-111
 建立了一种以L 白氨酸为手性选择剂用毛细管区带电泳法快速分离 12种手性药物的方法。实验结果表明 ,手性对映体的分离度受L 白氨酸浓度和缓冲液 pH的影响。在含有 70mmol/LL 白氨酸 ,5 0mmol/L硼砂 (pH9.0 )的溶液中 ,12种手性药物在 11min之内得到了基线分离。  相似文献   

8.
Determination of impurities in ionic liquids (ILs) remains a difficult task. In this work, the hyphenation of isotachophoretic (ITP) preconcentration to zone electrophoresis (ZE) has been explored for the trace analysis of the cationic impurities Na(+), Li(+), and methylimidazolium (MI(+)) in butylmethylimidazolium (BMI(+))-based ILs. Simultaneous detection of UV-transparent and UV-absorbing impurities was ensured by a BGE composed of creatinine-acetate buffer. To induce ITP, three different strategies were evaluated: (i) Sample self-stacking ensured by the addition of ammonium acetate (NH(4)Ac) to 25-50-fold diluted IL solution (transient ITP). (ii) Complete ITP-ZE separation performed in a single capillary: ITP was realized in discontinuous electrolytes comprising an 80 mM NH(4)Ac, 40 mM acetic acid, 30 mM alpha-CD, pH 5.05, leading electrolyte (LE) and a 10 mM creatinine, 10 mM acetic acid, pH 4.9, terminating electrolyte (TE). To create the ZE stage, the ITP stack of analytes was moved back toward the capillary inlet by pressure and simultaneously the capillary was filled with the BGE. This protocol made it possible to accommodate a 2.5-times diluted IL sample. (iii) Complete counterflow ITP-ZE with continuous electrokinetic sample supply: the ITP stage was performed in a capillary filled with a 150 mM NH(4)Ac, 75 mM acetic acid, 30 mM alpha-CD, pH 5.0 LE, with 40-times diluted IL at the capillary inlet. BMI(+) from IL acts as the terminating ion. The LODs reached in this latter case were at the 10 and 1 ppb levels for MI(+) and Li(+) in diluted IL matrix, respectively.  相似文献   

9.
In this study, an online concentration method in micellar electrokinetic chromatography (MEKC) applying field-enhanced sample injection (FESI) mode was developed for the detection of aristolochic acids (AAs) in Chinese medicine preparations. AA-I and AA-II were baseline separated with high separation efficiency, and 100-fold enhancement of the detection sensitivity was achieved compared with those obtained from normal capillary zone electrophoresis (CZE) or simple MEKC method. The proposed method was successfully applied for the determination of AAs in Chinese medicine preparations.  相似文献   

10.
The use of capillary zone electrophoresis (CZE) on-line coupled with isotachophoresis (ITP) sample pretreatment (ITP-CZE) on a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to the determination of bromate in drinking water was investigated. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the ITP-CZE separations. A high sample load capacity, linked with the use of ITP in this combination, made possible loading of the samples by a 9.2 microL sample injection channel of the chip. In addition, bromate was concentrated by a factor of 10(3) or more in the ITP stage of the separation and, therefore, its transfer to the CZE stage characterized negligible injection dispersion. This, along with a favorable electric conductivity of the carrier electrolyte solution, contributed to a 20 nmol/L (2.5 ppb) limit of detection for bromate in the CZE stage. Sample cleanup, integrated into the ITP stage, effectively complemented such a detection sensitivity and bromate could be quantified in drinking water matrices when its concentration was 80 nmol/L (10 ppb) or slightly less while the concentrations of anionic macroconstituent (chloride, sulfate, nitrate) in the loaded sample corresponding to a 2 mmol/L (70 ppm) concentration of chloride were still tolerable. The samples containing macroconstituents at higher concentrations required appropriate dilutions and, consequently, bromate in these samples could be directly determined only at proportionally higher concentrations.  相似文献   

11.
A rapid separation of polyamines and some related amino acids in cultured tumor cells by high-performance capillary zone electrophoresis with indirect photometric detection is demonstrated. 60 cm x 75 microns I.D. fused-silica capillary was used for the separation and quinine sulfate was used as a background electrolyte (BGE). Several polyamines (putrescine, spermidine and spermine), amino acids (lysine, arginine, histidine) and simple cations (K+, Na+) were easily separated in less than 10 min. Using the indirect photometric detection method, femtomole amounts of polyamines extracted from the tumor cells were detected from nanoliter injection volumes, and the signal response was linear over two orders of magnitude.  相似文献   

12.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

13.
Summary Amino acids in extracts of plant tissue were separated and detected by capillary zone electrophoresis (CZE) with indirect UV detection. Various aromatic carboxylates such as salicylate, benzoate, phthalate and trimellitate were investigated as background electrolytes (BGEs). A BGE of benzoate gave the best resolution and detector response. Amino acids were separated at a highly alkaline pH to charge amino acids negatively. Separation was achieved by the co-electroosmotic flow (Co-EOF) by the addition of the cationic surfactant myristyltrimethyl-ammonium bromide (MTAB) to the electrolyte. The condtions affecting the separation of amino acids, including electrolyte pH, concentrations of both benzoate and MTAB, were investigated and optimised. Separation of a mixture of 17 amino acids at pH 11.20 with indirect UV detection at 225 nm was achieved with a BGE of 10 mM benzoate containing 1.0 mM MTAB at pH of 11.20. Detection limits ranged between 10 and 50 μM. The proposed method was demonstrated by the determination of amino acids in extracts of Eucalypt leaves with direct injection of samples.  相似文献   

14.
A new capillary electrophoretic (CE) method was developed for the selective and sensitive determination of common metal ions. The proposed method is based on conventional CE separation of metal cations followed by complete complexation of separated analytes with 1,10-phenanthroline using the zone-passing technique. This approach combines both partial and complete complexation modes and, thus, enables rapid, selective, efficient separation together with sensitive direct UV detection of metal species. The optimal conditions for the separation and derivatization reaction were established by varying type of electrolyte, electrolyte pH, introduction time and concentration of 1,10-phenanthroline. The optimized separations were carried out in 50 mmol l(-1) glycolic acid electrolyte (pH 6.0 with imidazole) using direct UV detection at 254 nm. Five common metal cations (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) were separated in less than 4 min. The proposed system was applied to the determination of Fe(II) and Zn(II) in snow samples. The recovery tests established for snow samples were within the range 100+/-12%.  相似文献   

15.
A fast, convenient and sensitive method of capillary zone electrophoresis (CZE) and indirect UV detection was proposed for the determination of 16 amino acids. p-Aminobenzoic acid (PAB) was selected as a background electrolyte (BGE). An isolated cell included a BGE buffer part and an electrode buffer one, which were jointed with a glass frit. The isolated cell can prevent PAB from the electrode reaction and improve the stability of the detection baseline. The separation conditions of amino acids were investigated, such as different BGEs, BGE concentration, buffer pH and electroosmotic flow (EOF) modifiers. Under the selected separation conditions, 14 amino acid peaks could be separated in 12 min. The detection limits of the amino acids were in the range of 1.7 - 4.5 micromol/L. The isolated cell is suitable for reagents reacting on the electrodes in capillary electrophoresis. The proposed method has been successfully applied to the determination of the amino acids in tobacco samples.  相似文献   

16.
寡糖的毛细管电泳分析   总被引:10,自引:0,他引:10  
常理文  腰锐锋 《分析化学》1994,22(10):975-979
多种寡糖经α-萘胺衍生化后,用硼砂作为电泳介质,实现了高效毛细管电泳分离。比较了毛细管区带电泳和胶束毛细管电动色谱分离寡糖α-萘胺衍生物的电泳行为,对影响分离度的诸因素进行了考察,选择了最佳分离条件。  相似文献   

17.
A mixture of five tetracycline (TC) derivatives: minocycline (MC), demeclocycline (DMCTC), doxycycline (DC), and sancycline (SC), as well as each TC derivative from its main degradation product were separated by capillary zone electrophoresis (CZE). The influence of the pH and the concentration and nature of the background electrolyte (BGE) on the separations was investigated. Ethylenediaminetetraacetic acid (EDTA; 1 mM) was used as additive in a 25 mM phosphate buffer (pH 2.3) because this BGE enabled the rapid separation of the TC derivatives and of each TC derivative from its respective degradation product in less than 6 min. After optimization of the separation conditions, the analytical characteristics of the method were investigated. The parameters involved were linearity, precision (repeatability and reproducibility), and limits of detection (LODs). LODs obtained for the five TC derivatives studied were about 3 microg/mL. Finally, the CZE method developed was applied to study the stability of TC derivatives and to analyze the TC derivative content in three different pharmaceutical preparations.  相似文献   

18.
A CE–MS method has been developed to detect trace levels of potentially genotoxic alkyl halides. After derivatization of the target components with 4-dimethylaminopyridine (DMAP) or butyl 1-(pyridinyl-4yl) piperidine 4-carboxylate (BPPC), the natively positively charged derivatives are pre-concentrated by applying electrokinetic injection and separated by a highly efficient CZE method using a background electrolyte (BGE) consisting of 100 mM of TRIS adjusted to pH 2.5 with phosphoric acid. Using a sheath liquid interface, subsequent MS detection allows highly specific and sensitive analysis of alkyl halides.  相似文献   

19.
A capillary zone electrophoresis (CZE) method with indirect UV detection was developed to simultaneously separate inorganic and organic arsenic compounds including arsenite (iAsIII), arsenate (iAsV), monomethylarsonate and dimethylarsenic acid (DMAV). 2,6-Pyridinedicarboxylic acid (PDC) and n-hexadecyltrimethylammonium hydroxide (CTAOH) were selected to compose a background electrolyte (BGE), where PDC was used as chromophore and CTAOH functioned as electroosmotic flow (EOF) modifier to reduce/eliminate EOF. The choice of detection wavelength, the optimization of BGE pH, and effects of applied electric field strength and temperature on separation were further investigated. The limits of detection for the targeted analytes were between 0.19 and 0.23 ppm as molecule. Good linearity of more than three orders of magnitude was obtained. Repeatability of migration times and peaks areas were 0.8-1.7 and 3.4-6.9% R.S.D.; whereas reproducibility were 1.2-2.2 and 3.6-7.1% R.S.D., respectively. The established CZE method was then applied to analyze the alkali extracts of realgar (As2S2) and orpiment (As2S3). The main components in both alkali extracts were identified to be iAsIII and iAsV.  相似文献   

20.
The applicability of capillary zone electrophoresis (CZE) to ions having relatively low natural occurrences in sea water is limited by method's relatively poor concentration detection sensitivity. A combination of CZE with indirect UV detection and transient isotachophoresis (tITP) pre-concentration was developed to evolve the CZE practical utility towards the quantitative determination of the minor sea water cationic components, strontium and lithium. The ITP stacking criterion at the initial stage of a CZE separation was met by taking a highly mobile sodium, the principle matrix cation, to perform the role of a leading ion, whereas the moderately mobile sample macrocomponents, Ca2+ and Mg2+, acted as the terminating ion. The carrier electrolyte, consisting of 10 mM 4-methylbenzylamine and 1.5 mM citric acid at pH 4.8, was found to be optimal to accommodate both analyte cations in the ITP range and then separate them in the CZE mode, with relative standard deviations for migration times from 0.06-0.15% and for peak areas from 4-8%. The limits of detection were 1.3 mg l(-1) Sr2+ and 0.12 mg l(-1) Li+. The developed method was applied to the analysis of a surface sea water sample and a sea water reference material. The results were in good agreement with those obtained by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and electrothermal atomic absorption spectrometry (ET-AAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号