首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cesium salts of [Tc(2)X(8)](3-) (X = Cl, Br), the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) in THF, and the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C have been characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. For the [Tc(2)X(8)](3-) anions, the Tc-Tc separations found by EXAFS spectroscopy (2.12(2) ? for both X = Cl and Br) are in excellent agreement with those found by single-crystal X-ray diffraction (SCXRD) measurements (2.117[4] ? for X = Cl and 2.1265(1) ? for X = Br). The Tc-Tc separation found by EXAFS in these anions is slightly shorter than those found in the [Tc(2)X(8)](2-) anions (2.16(2) ? for X = Cl and Br). Spectroscopic and SCXRD characterization of the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) are consistent with the presence of dinuclear species that are related to the [Tc(2)Cl(8)](n-) (n = 2, 3) anions. From these results, a new preparation of (n-Bu(4)N)(2)[Tc(2)Cl(8)] was developed. Finally, EXAFS characterization of the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C indicates the presence of amorphous α-TcCl(3). The Tc-Tc separation (i.e., 2.46(2) ?) measured in this compound is consistent with the presence of Tc═Tc double bonds in the [Tc(3)](9+) core.  相似文献   

2.
The emission spectra of the solids [n-Bu(4)N](2)Tc(2)X(8) (X = Cl, Br) have been investigated at room temperature and 77 K. In each case, the emission originates in the (1)δ-δ* excited state, as with the rhenium homologues, but has a shorter lifetime.  相似文献   

3.
Rhenium and technetium are known for their useful applications in nuclear medicine with similar properties. In this study, new diamido dipyridino (N(4)) water-soluble ligands (2-C(5)H(4)NCH(2)NHCO)(2)CH(2), 1 (L(1)H2), (2-C(5)H(4)NNHNHCO)(2)CH(2), 2, and [2-C(5)H(4)N(+)(O)(-)CH(2)NHCO](2)CH(2), 3, were synthesized. Reaction of L(1)H2 with ReOCl(3)(PPh(3))(2) resulted in the novel six-coordinated rhenium(V) complex, trans-ReO(L(1))(OEt), 4. The complex was characterized by spectroscopic methods, and its X-ray crystallographic analysis revealed that rhenium is coordinated to four nitrogen atoms of the ligand and to two oxygen atoms from the deprotonated ethanol and the oxo group respectively in a distorted octahedral geometry. In solution, complex 4 was transformed to a new complex 5, which was proved to be the dinuclear complex mu-oxo [ReO(L(1))](2)O. Reaction of 1 with [n-Bu(4)N][ReOCl(4)] resulted in the neutral complex 6, trans-[ReO(L(1))]Cl. Similarly, when ligand 1 was reacted with [n-Bu(4)N][(99g)TcOCl(4)], the neutral trans-[(99)TcO(L(1))]Cl complex 7 was formed, which upon dissolution transformed into a cationic complex 8, trans-[(99)TcO(L(1))(OH(2))](+)Cl(-). The single-crystal X-ray structure of 8 reveals that the coordination sphere about technetium is a distorted octahedron with four nitrogen atoms in the equitorial plane, while doubly bonded oxygen and coordinated water occupy the apical positions. Further dissolution of 8 resulted in the formation of dinuclear mu-oxo [TcO(L(1))](2)O, 9. This study shows that Tc and Re have similar metal core structures in solution for diamido dipyridino systems, besides similarity in geometrical structure, proved by the X-ray structures on the same ligands.  相似文献   

4.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

5.
The structures of novel Tc(V) complexes trans-[TcO(2)(py)(4)]Cl·2H(2)O (1a), trans-[TcO(2)(pic)(4)]Cl·2H(2)O (2a), and trans-[TcO(2)(pic)(4)]BPh(4) (2b) were determined by X-ray crystallography, and their spectroscopic characteristics were investigated by emission spectroscopy and atomic scale calculations. The cations adopt a tetragonally distorted octahedral geometry, with a trans orientation of the apical oxo groups. trans-[TcO(2)(pic)(4)]BPh(4) has an inversion center located on technetium; however, for trans-[TcO(2)(py)(4)]Cl·2H(2)O and trans-[TcO(2)(pic)(4)]Cl·2H(2)O, a strong H bond formed by only one of the oxo substituents introduces an asymmetry in the structure, resulting in inequivalent trans Tc-N and Tc═O distances. Upon 415 nm excitation at room temperature, the complexes exhibited broad, structureless luminescences with emission maxima at approximately 710 nm (1a) and 750 nm (2a, 2b). Like the Re(V) analogs, the Tc(V) complexes luminesce from a (3)E(g) excited state. Upon cooling the samples from 278 to 8 K, distinct vibronic features appear in the spectra of the complexes along with increases in emission intensities. The low temperature emission spectra display the characteristic progressions of the symmetric O═Tc═O and the Tc-L stretching modes. Lowest-energy, triplet excited-state distortions calculated using a time-dependent theoretical approach are in good agreement with the experimental spectra. The discovery of luminescence from the trans-dioxotechnetium(V) complexes provides the first opportunity to directly compare fundamental luminescence properties of second- and third-row d(2) metal-oxo congeners.  相似文献   

6.
[Cp*Rh(eta1-NO3)(eta2-NO3)] (1) reacted with pyrazine (pyz) to give a dinuclear complex [Cp*Rh(eta1-NO3)(mu-pyz)(0.5)]2.CH2Cl2(3.CH2Cl2). Tetranuclear rectangles of the type [Cp*Rh(eta1,mu-X)(mu-L)(0.5)]4(OTf)4(4a: X = N3, L = bpy; 4b: X = N3, L = bpe; 4c: X = NCO, L = bpy) were prepared from [Cp*Rh(H2O)3](OTf)2 (2), a pseudo-halide (Me3SiN3 or Me3SiNCO), and a linear dipyridyl [4,4'-bipyridine (bpy) or trans-1,2-bis(4-pyridyl)ethylene (bpe)] by self-assembly through one-pot synthesis at room temperature. Treating complex with NH4SCN and dipyridyl led to the formation of dinuclear rods, [Cp*Rh(eta1-SCN)3]2(LH2) (5a: L = bpy; 5b: L = bpe), in which two Cp*Rh(eta1-SCN)3 units are connected by the diprotonated dipyridyl (LH2(2+)) through N(+)-H...N hydrogen bonds. Reactions of complex 2 with 1-(trimethylsilyl)imidazole (TMSIm) and dipyridyl (bpy or bpe) also produced another family of dinuclear rods [Cp*Rh(ImH)3]2.L (6a: L = bpy; 6b: L = bpe). Treating 1 and 2 with TMSIm and NH4SCN (in the absence of dipyridyl) generated a 1-D chain [Cp*Rh(ImH)3](NO3)2 (7) and a 1-D helix [Cp*Rh(eta1-SCN)2(eta1-SHCN)].H2O (8.H2O), respectively. The structures of complexes 3.CH2Cl2, 4a.H2O, 4c.2H2O, 5b, 6a, 7 and 8.H2O were determined by X-ray diffraction.  相似文献   

7.
The nature of the heteroatom X incorporated in the five-membered PXP-diphosphine bridging chain was found to play a primary unit role both in the overall stability and in the stereochemical arrangement of nitrido-containing [M(N)(PXP)](2+) metal fragments (M = Tc, Re). Thus, by mixing PXP ligands with labile [Re(N)Cl(4)](-) and Tc(N)Cl(2)(PPh(3))(2) nitrido precursors in CH(2)Cl(2)/MeOH mixtures, a series of neutral M(N)Cl(2)(PXP) complexes (M = Tc, 1-5; M = Re, 8, 9) was collected. In the resulting distorted octahedrons, PXP adopted facial or meridional coordination, and combination with halide co-ligands produced three different stereochemical arrangements, that is, fac,cis, mer,cis, and mer,trans, depending primarily on the nature of the diphosphine heteroatom X. When X = NH, mer,cis-Tc(N)Cl(2)(PNP1), 1, was the only isomer formed. Alternatively, when a tertiary amine nitrogen (X = NR; R = CH(3), CH(2)CH(2)OCH(3)) was introduced in the bridging chain, fac,cis-M(N)Cl(2)(PN(R)P) complexes (M = Tc, 2, 3; M = Re, 8f) were obtained. Isomerization into the mer,cis-Re(N)Cl(2)(PN(R)P), 8m, species was observed only in the case of rhenium when the tertiary amine group carried the less encumbering methyl substituent. fac,cis-Tc(N)Cl(2)(PSP), 4f, was isolated in the solid state when X = S, but a mixture of fac,cis-Tc(N)Cl(2)(PSP) and mer,trans-Tc(N)Cl(2)(PSP), 4m, isomers was found in equilibrium in the solution state. A similar equilibrium between fac,cis-M(N)Cl(2)(POP) (M = Tc, 5f; M = Re, 9f) and mer,trans-M(N)Cl(2)(POP) (M = Tc, 5m; M = Re, 9m) species was detected in POP-containing complexes. The molecular structure of all of these complexes was assessed by means of conventional physicochemical techniques including multinuclear NMR spectroscopy and X-ray diffraction analysis of representative mer,cis-Tc(N)Cl(2)(PN(H)P), 1, fac,cis-Tc(N)Cl(2)(PSP), 4f, and mer,cis-Re(N)Cl(2)(PN(Me)P), 8m, compounds.  相似文献   

8.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of trans-(PNP)[TcCl4(Py)2] and trans-(PNP)[TcBr4(Py)2] By reaction of (PNP)2[TcX6] with pyridine in the presence of [BH4]? (PNP)[TcX4(Py)2], X = Cl, Br, are formed. X-ray structure determinations on single crystals of these isotypic TcIII complexes (monoclinic, space group P21/n, Z = 2, for X = Cl: a = 13.676(4), b = 9.102(3), c = 17.144(2) Å, β = 91.159(1)°; for X = Br: a = 13.972(2), b = 9.146(3), c = 17.285(4) Å, β = 90.789(2)°) result in the averaged bond distances Tc? Cl: 2.386, Tc? Br: 2.519, Tc? N: 2.132(3) (X = Cl) and 2.143(4) Å (X = Br). The two pyridine rings are coplanar and vertical to the X? Tc? X-axes, forming angles of 42.28° (X = Cl) and 43.11° (X = Br). Using the molecular parameters of the X-ray structure determination and assuming D2h point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis based on a modified valence force field. Good agreement between observed and calculated frequencies is obtained with the valence force constants fd(TcCl) = 1.45, fd(TcBr) = 1.035, fd(TcN) = 1.37 (X = Cl) and 1.45 mdyn/ Å (X = Br), respectively.  相似文献   

9.
Oxidation of the acetate-bridged half-lantern platinum(II) complex cis-[Pt(II)(NH(3))(2)(μ-OAc)(2)Pt(II)(NH(3))(2)](NO(3))(2), [1](NO(3))(2), with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species cis-[XPt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(2)X](NO(3))(2), where X is Cl in [2](NO(3))(2) or Br in [3](NO(3))(2), respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈2.6 ?) Pt-Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt-X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of (1)H, (13)C, (14)N, and (195)Pt NMR spectroscopy was used to characterize [1](2+)-[3](2+) in solution. All resonances shift downfield upon oxidation of [1](2+) to [2](2+) and [3](2+). For the platinum(III) complexes, the (14)N and (195)Pt resonances exhibit decreased line widths by comparison to those of [1](2+). Density functional theory calculations suggest that the decrease in the (14)N line width arises from a diminished electric field gradient at the (14)N nuclei in the higher valent compounds. The oxidation of [1](NO(3))(2) with the alternative oxidizing agent bis(trifluoroacetoxy)iodobenzene affords the novel tetranuclear complex cis-[(O(2)CCF(3))Pt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(μ-NH(2))](2)(NO(3))(4), [4](NO(3))(4), also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed.  相似文献   

10.
Two new oxides have been unambiguously identified as Bi2Tc2O7-delta with delta = 0.14(1) and Bi3TcO8 through X-ray absorption near-edge structure spectroscopy and neutron powder diffraction. The compound Bi2Tc2O7-delta has a cubic pyrochlore-type structure with a = 10.4746(1) A, space group Fd3m (origin choice 2), and Z = 8. The compound Bi3TcO8 is also cubic, a = 11.5749(1) A, space group P2(1)3, Z = 8, and has a fluorite-related crystal structure. In Bi2Tc2O7-delta the Tc(IV) cations are octahedrally coordinated, whereas in Bi3TcO8 the Tc(VII) cations are tetrahedrally coordinated. A third new phase, probably Bi3Tc3O11, could not be obtained pure, but preliminary X-ray powder diffraction data affords a primitive cubic lattice with a = 9.3433(1) A. On the basis of structural similarities between Bi2Tc2O7-delta and closely related oxides, Bi2Tc2O7-delta is expected to be a metallic oxide with Pauli paramagnetism. Electronic structure calculations of both Bi2Tc2O7-delta and Bi3TcO8 further support metallic conductivity in the former and insulating behavior in the latter. The inert pair effect of the Bi cations on the crystal structures of Bi2Tc2O7-delta and Bi3TcO8 is also described. In addition, calculations of the valence electron localization function for Bi2Tc2O7-delta and Bi3TcO8 provide further visualization of the Bi 6s(2) lone pair electrons in the real space of the crystal structures.  相似文献   

11.
The luminescence of trans-[TcO2(L)4]+ (L = pyridine (py) or picoline (pic)) and trans-[TcO2(CN)4]3- at room and low temperature is described and represents the first example of room temperature excited-state luminescence observed for Tc complexes. At room temperature, the complexes exhibited broad luminescence with emission maxima ranging from 745 to 780 nm. Analogous to the Re complexes (emission at 635-655 nm), the low-temperature emission spectra of microcrystalline samples of [TcO2(py)4]BPh4 and [TcO2(pic)4]BPh4 display the characteristic progressions of the symmetric O=Tc=O and Tc-L stretching modes. DFT/TDDFT calculations were performed on the trans-[MO2(L)4]+ (M = Re, Tc) congeners and predicted the dioxotechnetium emission to be 0.41 eV lower in energy than its Re analogue. Low-temperature lifetimes (8 K) ranging from 15 to 1926 mus for the series of Tc complexes are consistent with the Re analogues.  相似文献   

12.
Reactions of dioxoruthenium(VI) porphyrins, [Ru(VI)O2(Por)], with p-chloroaniline, trimethylamine, tert-butylamine, p-nitroaniline, and diphenylamine afforded bis(amine)ruthenium(II) porphyrins, [Ru(II)(Por)(L)2] (L-p-ClC6H4NH2, Me3N, Por=TTP, 4-Cl-TPP; L=tBuNH2, Por = TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP) and bis(amido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(X)2] (X=p-NO2C6H4NH, Por=TTP, 4-Cl-TPP; X = Ph2N, Por = 3,4,5-MeO-TPP, 3,5-Cl-TPP), respectively. Oxidative deprotonation of [Ru(II)(Por)(NH2-p-C6H4Cl)2] in chloroform by air generated bis(arylamido)ruthenium(IV) porphyrins, [RuIV(Por)(NH-p-C6H4Cl)2] (Por=TTP. 4-Cl-TPP). Oxidation of [RuII(Por)-(NH2tBu)2] by bromine in dichloromethane in the presence of tert-butylamine and traces of water produced oxo(imido)ruthenium(VI) porphyrins, [RuVI-O(Por)(NtBu)] (Por=TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP). These new classes of ruthenium complexes were characterized by 1H NMR, IR, and UV/visible spectroscopy, mass spectrometry, and elemental analysis. The structure of [Ru(IV)(TTP)(NH-p-C6H4Cl)2 . CH2Cl2 was determined by X-ray crystallography. The Ru-N bond length and the Ru-N-C angle of the Ru-NHAr moiety are 1.956(7) A and 135.8(6) degrees, respectively.  相似文献   

13.
Synthesis and characterisation of mixed halophenylbismuthates(III) with a general formula Bu4N[PhBiX2Y] where X = Cl or Br; Y = Cl, Br or I; X ≠ Y are reported. The molecular structures of Bu4N[PhBiCl2Br] ( 1 ) and Bu4N[PhBiBr2I] ( 2 ) are determined by X‐ray crystallography. In mixed halophenylbismuthates, the anion exists as a dimer with bismuth in a distorted square pyramidal coordination. In the dimer the two phenyl groups occupy anti position to each other thereby minimising the repulsion.  相似文献   

14.
The highly reactive mixed anhydrides [TcO3(OCOPh)] and [TcO3(OBF3)]- were synthesized by treatment of [TcO4]- with strong Lewis acids benzoyl chloride and BF3.OEt2. These mixed anhydrides, prepared in situ, were used as precursors for the synthesis of complexes containing the [TcO3]+ core. Subsequent reactions with bi- or tridentate ligands resulted in new complexes comprised of the [TcO3]+ core. As examples with bidentate ligands, the classical complexes [TcO3Cl(bipy)] (1) (bipy = 2,2'-bipyridine) and [TcO3Cl(phen)] (2) (phen = 1,10-phenanthroline) have been prepared by this strategy and structurally characterized. The new compounds [TcO3(bpza)] (3) (bpza = di-1H-pyrazol-1-ylacetate), [TcO3(bpza*)] (4) (bpza* = bis(3,5-dimethyl-1H-pyrazol-1-yl)acetate), [TcO3(tpzm*)]+ (6) (tpzm* = 1,1,1-methanetriyltris(3,5-dimethyl-1H-pyrazole), and [ReO3(tpzm*)][ReO4] (7) are examples of complexes with tripod ligands. The complexes have been structurally characterized, and their 99Tc NMR spectra have been recorded. As a common feature, the X-ray structures show a distinct widening of the O-Tc-O angles, almost to a tetrahedral angle. With the perspective of radiopharmaceutical applications, water stability and reactivities toward alkenes are described.  相似文献   

15.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to investigate the gas-phase ionic dissociation energies and thermochemistry of Me4Ge and Me3GeX, (Me = methyl; X = Cl, Br) molecules. The 0 K dissociation onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distributions, which were modeled with the statistical RRKM theory and DFT calculations. The measured 0 K dissociative photoionization onsets were as follows: Me3Ge+ + Me (9.826 +/- 0.010 eV); Me3Ge+ + Cl (10.796 +/- 0.040 eV); Me3Ge+ + Br (10.250 +/- 0.011 eV); Me2GeCl+ + Me (10.402 +/- 0.010 eV); and Me2GeBr+ + Me (10.333 +/- 0.020 eV). These onsets were used to obtain new values for delta(f)H(degrees)298 (in kJ/mol) of the neutral molecules Me3GeCl (-239.8 +/- 5.7) and Me3GeBr (-196.5 +/- 4.3), and also for the following ionic species: Me3Ge+ (682.3 +/- 4.1), Me2GeCl+ (621.1 +/- 5.8), and Me2GeBr+ (657.8 +/- 4.7).  相似文献   

16.
Kinetics for reactions between thiocyanate and trans-Au(CN)(2)Cl(2)(-), trans-Au(CN)(2)Br(2)(-), and trans-Au(NH(3))(2)Cl(2)(+) in an acidic, 1.00 M perchlorate aqueous medium have been studied by use of conventional and diode-array UV/vis spectroscopy and high-pressure and sequential-mixing stopped-flow spectrophotometry. Initial, rapid formation of mixed halide-thiocyanate complexes of gold(III) is followed by slower reduction to Au(CN)(2)(-) and Au(NH(3))(2)(+), respectively. This is an intermolecular process, involving attack on the complex by outer-sphere thiocyanate. Second-order rate constants at 25.0 degrees C for reduction of trans-Au(CN)(2)XSCN(-) are (6.9 +/- 1.1) x 10(4) M(-)(1) s(-)(1) for X = Cl and (3.1 +/- 0.7) x 10(3) M(-)(1) s(-)(1) for X = Br. For reduction of trans-Au(CN)(2)(SCN)(2)(-) the second-order rate constant at 25.0 degrees C is (3.1 +/- 0.1) x 10(2) M(-)(1) s(-)(1) and the activation parameters are DeltaH() = (55 +/- 3) x 10(2) kJ mol(-)(1), DeltaS() = (-17.8 +/- 0.8) J K(-)(1) mol(-)(1), and DeltaV() = (-4.6 +/- 0.5) cm(3) mol(-)(1). The activation volume for substitution of one chloride on trans-Au(NH(3))(2)Cl(2)(+) is (-4.5 +/- 0.5) cm(3) mol(-)(1), and that for reduction of trans-Au(NH(3))(2)(SCN)(2)(+) (4.6 +/- 0.9) cm(3) mol(-)(1). The presence of pi-back-bonding cyanide ligands stabilizes the transition states for both substitution and reductive elimination reactions compared to ammine. In particular, complexes trans-Au(CN)(2)XSCN(-) with an unsymmetric electron distribution along the X-Au-SCN axis are reduced rapidly. The observed entropies and volumes of activation reflect large differences in the transition states for the reductive elimination and substitution processes, respectively, the former being more loosely bound, more sensitive to solvational changes, and probably not involving any large changes in the inner coordination sphere. A transition state with an S-S interaction between attacking and coordinated thiocyanate is suggested for the reduction. The stability constants for formation of the very short-lived complex trans-Au(CN)(2)(SCN)(2)(-) from trans-Au(CN)(2)X(SCN)(-) (X = Cl, Br) by replacement of halide by thiocyanate prior to reduction can be calculated from the redox kinetics data to be K(Cl,2) = (3.8 +/- 0.8) x 10(4) and K(Br,2) = (1.1 +/- 0.4) x 10(2).  相似文献   

17.
Reaction of [ReOCl3(PPh3)(2)] with HCpz(3) (pz = pyrazole) in dichloromethane leads to the formation of a new Re(iv) complex [ReCl3(HCpz3)]X (X=Cl, [ReO4]) with loss of the rhenium-oxo group. We also report a convenient, high-yield synthetic route to complexes of the type [ReOXn(L)](3-n)+ (X=Cl, Br, n = 2, 3) by the reaction of bis(pyrazolylmethane) and bis(pyrazolylacetate) ligands with [ReOCl3(PPh3)2]. Dinuclear complexes containing the O=Re-O-Re=O group were also isolated and structurally characterised. We have also investigated the reactions of these ligands with diazenide precursors and isolated and characterised complexes of the type [ReClx(N2Ph) (L)(PPh3)] (x = 1,2). The potential applications of these complexes as radiopharmaeuticals is discussed.  相似文献   

18.
The oxidation of 8-methoxypsoralen (2) with hydrogen peroxide and potassium superoxide catalyzed by 5,10,15,20-(2,4,6-trimethylphenyl)porphyrinatoiron(III) chlorides [Me12TPPFe(III)Cl] (1a) and 5,10,15,20-(2,6-dichlorophenyl)porphyrinatoiron(III) chlorides [Cl8TPPFe(III)Cl] (1b) in dichloromethane gives 6-formyl-7-hydroxy-8-methoxycoumarin (3) in moderate yields, whereas the oxidation of (2) with H2O2 catalyzed by 5,10,15,20-(2,6-dichlorophenyl)-beta-octahaloporphyrinatoiron(III) chlorides [Cl8betaX8TPPFe(III)Cl] (X=Cl, Br) (1c, 1d) gives specifically 5,8-dioxopsoralen (4) in moderate yields.  相似文献   

19.
Reaction of Mo(2)Cl(4)(dppm)(2) (dppm = bis(diphenylphosphino)methane) with 6 equiv of [n-Bu(4)N][CN] or [Et(4)N][CN] in dichloromethane yields [n-Bu(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (1) and [Et(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (2), respectively. The corresponding one- and two-electron oxidation products [n-Bu(4)N][Mo(2)(CN)(6)(dppm)(2)] (3) and Mo(2)(CN)(6)(dppm)(2) (4)were prepared by reactions of 1 with the oxidant NOBF(4). Single-crystal X-ray structures of 2.2CH(3)CN, 3.2CH(3)CN.2H(2)O, and 4.2CH(3)NO(2) were performed, and the results confirmed that all three complexes contain identical ligand sets with trans dppm ligands bisecting the Mo(2)(mu-CN)(2)(CN)(4) equatorial plane. The binding of the bridging cyanide ligands is affected by the oxidation state of the dimolybdenum core as evidenced by an increase in side-on pi-bonding overlap of the mu-CN in going from 1 to 4. The greater extent of pi-donation into Mo orbitals is accompanied by a lengthening of the Mo-Mo distance (2.736(1) A in Mo(2)(II,II) (2), 2.830(1) A in Mo(2)(II,III) (3), and 2.936(1) A in Mo(2)(III,III) (4)). A computational study of the closed-shell members of this homologous series, [Mo(2)(CN)(6)(dppm)(2)](n)() (n = 2-, 0), indicates that the more pronounced side-on pi-donation evident in the X-ray structure of 4 leads to significant destabilization of the delta orbital and marginal stabilization of the delta() orbitals with respect to nearly degenerate delta and delta orbitals in the parent compound, 2. The loss of delta contributions combined with the reduced orbital overlap due to higher charges on molybdenum centers in oxidized complexes 3 and 4 is responsible for the observed increase in the length of the Mo-Mo bond.  相似文献   

20.
Wei L  Babich JW  Zubieta J 《Inorganic chemistry》2004,43(20):6445-6454
The reactions of 1 or 2 equiv of N-methyl-o-diaminobenzene with trans-[ReOX(3)(PPh(3))(2)] (X = Cl, Br) in refluxing chloroform gave oxo-free rhenium complexes [Re(VI)X(4)(NC(6)H(4)NHCH(3))(OPPh(3))] (X = Cl, 3; X = Br, 6), [Re(V)X(2)Y(NC(6)H(4)NHCH(3))(PPh(3))(2)] (X, Y = Cl, 4; X = Br, Y = Cl, 7), [Re(IV)Cl(2)(NHC(6)H(4)NCH(3))(2)] (5), and [Re(IV)Br(3)(NHC(6)H(4)NCH(3))(PPh(3))] (8). All complexes were characterized by elemental analysis, (1)H NMR and IR spectroscopy, cyclic voltammetry, EPR spectroscopy, and X-ray crystallography. The complexes all display distorted octahedral coordination geometry. For Re(IV) complexes 5 and 8, the ligands coordinate in the benzosemiquinone diimine form. In Re(VI) complexes 3 and 6 and the Re(V) complexes 4 and 7, the ligands coordinate in the dianionic monodentate imido form. The EPR spectra of Re(VI) species 3 and 6 in dichloromethane solution at room temperature exhibit the characteristic hyperfine pattern of six lines, with evidence of strong second-order effects. The IR spectra of the complexes are characterized by Re=N and Re-N stretching bands at ca. 1090 and 540 cm(-)(1), respectively. The Re(IV) and Re(V) complexes display well-resolved NMR spectra, while the Re(VI) complexes exhibit no observable spectra, due to paramagnetism. The cyclic voltammograms of complexes 3 and 6 display Re(VII)/ Re(VI) and Re(VI)/Re(V) processes, those of 4 and 7 exhibit Re(VI)/Re(V) and Re(V)/Re(IV) couples, and those of 5 and 8 are characterized by Re(V)/Re(IV) and Re(IV)/Re(III) processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号