首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Using spin-echo NMR techniques we study the transverse spin relaxation of hyperpolarized liquid 129Xe in a spherical cell. We observe an instability of the transverse magnetization due to dipolar fields produced by liquid 129Xe, and find that imperfections in the pi pulses of the spin-echo sequence suppress this instability. A simple perturbative model of this effect is in good agreement with the data. We obtain a transverse spin relaxation time of 1300 sec in liquid 129Xe, and discuss applications of hyperpolarized liquid 129Xe as a sensitive magnetic gradiometer and for a permanent electric dipole moment search.  相似文献   

2.
In magnetic resonance imaging with hyperpolarized (HP) noble gases, data is often acquired during prolonged gas delivery from a storage reservoir. However, little is known about the extent to which relaxation within the reservoir will limit the useful acquisition time. For quantitative characterization, 129Xe relaxation was studied in a bag made of polyvinyl fluoride (Tedlar). Particular emphasis was on wall relaxation, as this mechanism is expected to dominate. The HP 129Xe magnetization dynamics in the deflating bag were accurately described by a model assuming dissolution of Xe in the polymer matrix and dipolar relaxation with neighboring nuclear spins. In particular, the wall relaxation rate changed linearly with the surface-to-volume ratio and exhibited a relaxivity of κ=0.392±0.008 cm/h, which is in reasonable agreement with κ=0.331±0.051 cm/h measured in a static Tedlar bag. Estimates for the bulk gas-phase 129Xe relaxation yielded T1bulk=2.55±0.22 h, which is dominated by intrinsic Xe-Xe relaxation, with small additional contributions from magnetic field inhomogeneities and oxygen-induced relaxation. Calculations based on these findings indicate that relaxation may limit HP 129Xe experiments when slow gas delivery rates are employed as, for example, in mouse imaging or vascular infusion experiments.  相似文献   

3.
We report an enhancement of proton NMR signals by a factor of 10(6) by cross polarization with hyperpolarized liquid 129Xe in an ultralow magnetic field of 1 microT. The NMR signals from cyclopentane, acetone, and methanol are detected using a commercial high-T(c) SQUID magnetometer with a signal-to-noise ratio of up to 1000 from a single 90 degrees tipping pulse. This technique allows a wide range of low-field NMR measurements and is promising for the detection of intermolecular scalar spin-spin couplings. Scalar intermolecular couplings can produce a shift of the average NMR frequency in a hyperpolarized sample even in the presence of rapid chemical exchange.  相似文献   

4.
Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.  相似文献   

5.
Consequences of (129)Xe-(1)H cross relaxation in aqueous solutions.   总被引:1,自引:0,他引:1  
We have investigated the transfer of polarization from (129)Xe to solute protons in aqueous solutions to determine the feasibility of using hyperpolarized xenon to enhance (1)H sensitivity in aqueous systems at or near room temperatures. Several solutes, each of different molecular weight, were dissolved in deuterium oxide and although large xenon polarizations were created, no significant proton signal enhancement was detected in l-tyrosine, alpha-cyclodextrin, beta-cyclodextrin, apomyoglobin, or myoglobin. Solute-induced enhancement of the (129)Xe spin-lattice relaxation rate was observed and depended on the size and structure of the solute molecule. The significant increase of the apparent spin-lattice relaxation rate of the solution phase (129)Xe by alpha-cyclodextrin and apomyoglobin indicates efficient cross relaxation. The slow relaxation of xenon in beta-cyclodextrin and l-tyrosine indicates weak coupling and inefficient cross relaxation. Despite the apparent cross-relaxation effects, all attempts to detect the proton enhancement directly were unsuccessful. Spin-lattice relaxation rates were also measured for Boltzmann (129)Xe in myoglobin. The cross-relaxation rates were determined from changes in (129)Xe relaxation rates in the alpha-cyclodextrin and myoglobin solutions. These cross-relaxation rates were then used to model (1)H signal gains for a range of (129)Xe to (1)H spin population ratios. These models suggest that in spite of very large (129)Xe polarizations, the (1)H gains will be less than 10% and often substantially smaller. In particular, dramatic (1)H signal enhancements in lung tissue signals are unlikely.  相似文献   

6.
We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol.  相似文献   

7.
We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol.  相似文献   

8.
A technique for continuous production of solutions containing hyperpolarized 129Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized 129Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of 129Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized 129Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.  相似文献   

9.
129 Xe with a nuclear polarization far above the thermal equilibrium value (hyperpolarized) is used in NMR studies to increase sensitivity. Gaseous, adsorbed, or dissolved xenon is utilized in physical, chemical, and medical applications. With the aim in mind to study single-crystal surfaces by NMR of adsorbed hyperpolarized 129Xe, three problems have to be solved. The reliable production of 129Xe with highest nuclear polarization possible, the separation of the xenon gas from the necessary quench gas nitrogen without polarization loss, and the dosing/delivery of small amounts of polarized xenon gas to a sample surface. Here we describe an optical pumping setup that regularly produces xenon gas with a 129Xe nuclear polarization of 0.7(±0.07). We show that a freeze–pump–thaw separation of xenon and nitrogen is feasible without a significant loss in xenon polarization. The nitrogen partial pressure can be suppressed by a factor of 400 in a single separation cycle. Dosing is achieved by using the low vapor pressure of a frozen hyperpolarized xenon sample. Received: 12 June 1998  相似文献   

10.
激光极化的12 9Xe核具有极高的非平衡极化度和长的弛豫时间 ,这一特点使得它能够极化转移增强液体、固体或者固体表面分子中原子核自旋极化。因而 ,提高了它们的核磁共振探测灵敏度和扩展了在材料和表面科学研究中的应用。综述激光极化12 9Xe核与其它分子中原子核之间的极化转移研究与进展 ,介绍相关物理机制和参数的测量。  相似文献   

11.
激光极化的129Xe核具有极高的非平衡极化度和长的弛豫时间,这一特点使得它能够极化转移增强液体、固体或者固体表面分子中原子核自旋极化。因而,提高了它们的核磁共振探测灵敏度和扩展了在材料和表面科学研究中的应用。综述激光极化129Xe核与其它分子中原子核之间的极化转移研究与进展,介绍相关物理机制和参数的测量。  相似文献   

12.
In this work, computer modeling based on a finite element method is used to simulate the T2* relaxation of hyperpolarized noble gases (HNG) in the lungs. A physical model of lung airways consisting of a phantom constructed from micro-capillary fibers of diameters similar to the size of lung airways with semi-permeable walls is also presented. The fibers are surrounded by a liquid medium (water) of magnetic susceptibility similar to lung tissue. Theoretical predictions of the field strength dependence of T2* for 129Xe in the phantom and in vivo rat lung are presented. These predictions are in good agreement with experimental T2* values obtained from the phantoms and in vivo rat lungs (160, 19 and 8 ms) at three different field strengths (0.074, 1.89 and 3T, respectively) using hyperpolarized 129Xe. The strong dependence of T2* on field strength is consistent with the theoretical prediction that low fields may be optimal for HNG MR imaging of the lungs as the decreased T2* at high fields necessitates an increase in bandwidth for conventional MR imaging.  相似文献   

13.
In order to establish a continuous hyperpolarized xenon-129 (HP-129Xe) gas delivery system for MR imaging, the effect of the metallic materials in the gas pipeline on the signal intensity was investigated. In the gas pipeline, an appropriate surface is needed to minimize wall relaxation by the HP-129Xe gas caused by the interaction between the HP gas and the surface, which can lead to signal loss. Although Pyrex glass is a popular material for the HP gas chamber, it is fragile under heat or physical stress. In this study, five stainless steel tubes (STs) prepared with different surface film-forming processes were examined. The MR signal intensities of HP-129Xe gas that passed through each tube were then compared. The film passivated by iron fluoride maintained the highest level of hyperpolarization, whereas that passivated by chromium oxide maintained the lowest. A ST with an appropriate passive film may be a useful alternative to a Pyrex glass pipeline.  相似文献   

14.
The temperature dependence of the NMR chemical shift of129Xe dissolved in liquid alkanes is examined in the context of the reaction field model. An essential feature of the theory is the inclusion of the temperature dependence of the density of thesolvent. The theory of free volume for liquids is incorporated into the reaction field model to account for this temperature dependence. Comparison of the theory with previously reported measurements indicates the sensitivity of the129Xe chemical shift to the free volume of liquids. Incorporation of free volume improves the agreement between measurement and theory for branched alkane solvents, and resolves the origin of the 62 ppm intercept in the plot of reaction field as a function of129Xe chemical shift for the n-alkanes.  相似文献   

15.
超极化~(129)Xe磁共振波谱和成像及在生物医学中的应用   总被引:1,自引:0,他引:1  
文章简要介绍了磁共振波谱和成像的基本原理和对限制其灵敏度的挑战,详细阐述了为增强磁共振信号而制备超极化129Xe的物理机制,论述了129Xe在生物组织中的溶解性以及化学位移的特异性,综述了当前超极化129Xe在肺部、脑部成像领域的研究进展和在临床方面应用所取得的有代表性的研究成果,并讨论了基于超极化129Xe分子生物探针的超灵敏磁共振技术的研究前景,最后对超极化129Xe在生物医学领域的应用与发展作了展望.  相似文献   

16.
因其较高的核自旋极化度所提供的探测灵敏度,超极化129Xe气体已被成功应用于动物和人体磁共振成像(MRI).但是,在超极化129Xe的收集-升华过程中,多种因素会导致129Xe核自旋弛豫,进而限制其应用范围.本文通过理论模型分析和实验测量,验证了温度、磁场、螺旋冷阱材质等对冷冻恢复过程中超极化129Xe弛豫的影响;同时,测量了自动收集-升华装置的稳定性.研究结果表明,升华方式和冷阱材质对129Xe极化度损耗的影响显著;自制收集-升华装置的自动化程度高、长时间稳定,129Xe极化度的恢复率可达到85.6% ± 4.7%.本研究非常有助于提升超极化129Xe在动物和人体MRI中的使用效率.  相似文献   

17.
We studied the free precession of the nuclear magnetization of hyperpolarized 129Xe gas in external magnetic fields as low as B0 = 4.5 nT, using SQUIDs as magnetic flux detectors. The transverse relaxation was mainly caused by the restricted diffusion of 129Xe in the presence of ambient magnetic field gradients. Its pressure dependence was measured in the range from 30 mbar to 850 mbar and compared quantitatively to theory. Motional narrowing was observed at low pressure, yielding transverse relaxation times of up to 8000 s.  相似文献   

18.
超极化气体3He 或者129Xe 扩散加权成像已经被证明了能够有效检测慢性阻塞性肺部疾病(COPD)中肺部微结构的改变.相比于3He,129Xe 更便宜而且更容易获得,但是129Xe 成像中较低的信噪比致使129Xe 的肺部表面扩散系数(ADC)的测量面临着许多困难.在该研究中,为了得到更高的图像信噪比,作者对气球模型,健康大鼠和COPD大鼠进行了单个b 值(14 cm2/s)的扩散加权超极化129Xe 磁共振成像(MRI).所有的COPD模型大鼠是通过烟熏和注射内毒素(LPS)进行诱导得到的.在7 T 磁共振成像仪上面获得了大鼠肺实质的超极化129Xe ADC 值分布图.COPD 大鼠肺实质的129Xe ADC 值是0.044 22±0.002 9 和0.042 34±0.002 3 cm2/s (Δ = 0.8/1.2 ms),远大于健康大鼠肺实质的129Xe ADC 值0.037 7±0.002 3 和0.036 7±0.001 3 cm2/s.而且COPD 大鼠肺实质相关的129Xe ADC 直方图也表现出了一定的展宽.这些结果说明了COPD 大鼠肺泡空腔的增大能够通过129Xe 在肺里面的ADC 增长和相关直方图的拓宽反应出来,从而证明了单个b 值的扩散加权MRI 方法可以有效地对COPD 大鼠进行检测.  相似文献   

19.
A stand-alone, self-contained and transportable system for the polarization of 129Xe by spin exchange optical pumping with Rb is described. This mobile polarizer may be operated in batch or continuous flow modes with medium amounts of hyperpolarized 129Xe for spectroscopic or small animal applications. A key element is an online nuclear magnetic resonance module which facilitates continuous monitoring of polarization generation in the pumping cell as well as the calculation of the absolute 129Xe polarization. The performance of the polarizer with respect to the crucial parameters temperature, xenon and nitrogen partial pressures, and the total gas flow is discussed. In batch mode the highest 129Xe polarization of PXe = 40 % was achieved using 0.1 mbar xenon partial pressure. For a xenon flow of 6.5 and 26 mln/min, P Xe = 25 % and P Xe = 13 % were reached, respectively. The mobile polarizer may be a practical and efficient means to make the applicability of hyperpolarized 129Xe more widespread.  相似文献   

20.
在自旋交换光泵过程中,多种参数可能会影响到最终可获得的超极化气体氙-129核自旋极化度.通过低场(0.002 T)核磁共振(NMR)系统研究了连续流动工作模式的自旋交换光泵过程,当混合工作气体流量为0.3 SLPM和0.5 SLPM时,实验测量得到最佳光泵泡工作温度;对于同位素富集和自然丰度的氙-129气体,核自旋极化度的建立时间分别为15 min和22 min.由于混合工作气体的压力以及组分会导致铷原子吸收线的频移和展宽,并且影响到其线型,实验通过低场NMR系统测量确定了用于自旋交换光泵的最佳激光工作波长.低场NMR测量为获得具有高核自旋极化度的超极化气体氙-129,并且能够用于人体肺部MRI研究提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号