首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is devoted to characterize permutations with forbidden patterns by using canonical reduced decompositions, which leads to bijections between Dyck paths and Sn(321) and Sn(231), respectively. We also discuss permutations in Sn avoiding two patterns, one of length 3 and the other of length k. These permutations produce a kind of discrete continuity between the Motzkin and the Catalan numbers.  相似文献   

2.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

3.
4.
If 1≤n< and RS are integral domains, then (R,S) is called an n-catenarian pair if for each intermediate ring T (that is each ring T such that RTS) the polynomial ring in n indeterminates, T[n] is catenarian. This implies that (R,S) is m-catenarian for all m<n. The main purpose of this paper is to prove that 1-catenarian and universally catenarian pairs are equivalent in several cases. An example of a 1-catenarian pair which is not 2-catenarian is given.  相似文献   

5.
Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n×n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which inertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, which settles an open problem from the October 2006 AIM Workshop on Spectra of Families of Matrices described by Graphs, Digraphs and Sign Patterns. We also determine some restrictions on the inertia set of any graph.  相似文献   

6.
In this paper, we consider the following problem: of all tricyclic graphs or trees of order n with k pendant vertices (n,k fixed), which achieves the maximal signless Laplacian spectral radius?We determine the graph with the largest signless Laplacian spectral radius among all tricyclic graphs with n vertices and k pendant vertices. Then we show that the maximal signless Laplacian spectral radius among all trees of order n with k pendant vertices is obtained uniquely at Tn,k, where Tn,k is a tree obtained from a star K1,k and k paths of almost equal lengths by joining each pendant vertex to one end-vertex of one path. We also discuss the signless Laplacian spectral radius of Tn,k and give some results.  相似文献   

7.
8.
In this work we give an interpretation of vertices and edges of the acyclic Birkhoff polytope, Tnn(T), where T is a tree with n vertices, in terms of graph theory. We generalize a recent result relatively to the diameter of the graph G(Tn).  相似文献   

9.
A more sums than differences (MSTD) set is a finite subset S of the integers such that |S+S|>|SS|. We construct a new dense family of MSTD subsets of {0,1,2,…,n−1}. Our construction gives Θ(n2/n) MSTD sets, improving the previous best construction with Ω(n2/n4) MSTD sets by Miller, Orosz, and Scheinerman.  相似文献   

10.
Let T be a completely nonunitary contraction on a Hilbert space H with r(T)=1. Let an>0, an→0. Then there exists xH with |〈Tnx,x〉|?an for all n. We construct a unitary operator without this property. This gives a negative answer to a problem of van Neerven.  相似文献   

11.
Let S(n, k) denote Stirling numbers of the second kind; for each n, let Kn be such that S(n, Kn) ? S(n, k) for all k. Also, let P(n) denote the lattice of partitions of an n-element set. Say that a collection of partitions from P(n) is incomparable if no two are related by refinement. Rota has asked if for all n, the largest possible incomparable collection in P(n) contains S(n, Kn) partitions. In this paper, we construct for all n sufficiently large an incomparable collection in P(n) containing strictly more than S(n, Kn) partitions. We also estimate how large n must be for this construction to work.  相似文献   

12.
We consider a family of birth processes and birth-and-death processes on Young diagrams of integer partitions of n. This family incorporates three famous models from very different fields: Rost?s totally asymmetric particle model (in discrete time), Simon?s urban growth model, and Moran?s infinite alleles model. We study stationary distributions and limit shapes as n tends to infinity, and present a number of results and conjectures.  相似文献   

13.
Given a finitely generated semigroup S and subsemigroup T of S, we define the notion of the boundary of T in S which, intuitively, describes the position of T inside the left and right Cayley graphs of S. We prove that if S is finitely generated and T has a finite boundary in S then T is finitely generated. We also prove that if S is finitely presented and T has a finite boundary in S then T is finitely presented. Several corollaries and examples are given.  相似文献   

14.
《Journal of Number Theory》1987,25(3):308-312
If p(n, k) is the number of partitions of n into parts ≤k, then the sequence {p(k, k), p(k + 1, k),…} is periodic modulo a prime p. We find the minimum period Q = Q(k, p) of this sequence. More generally, we find the minimum period, modulo p, of {p(n; T)}n ≥ 0, the number of partitions of n whose parts all lie in a fixed finite set T of positive integers. We find the minimum period, modulo p, of {S(k, k), S(k + 1, k),…}, where these are the Stirling numbers of the second kind. Some related congruences are proved. The methods involve the use of cyclotomic polynomials over Zp[x].  相似文献   

15.
Let N be the set of all positive integers and D a subset of N. Let p(D,n) be the number of partitions of n with parts in D and let |D(x)| denote the number of elements of D not exceeding x. It is proved that if D is an infinite subset of N such that p(D,n) is even for all n?n0, then |D(x)|?logx/log2−logn0/log2. Moreover, if D is an infinite subset of N such that p(D,n) is odd for all n?n0 and , then |D(x)|?logx/log2−logn0/log2. These lower bounds are essentially the best possible.  相似文献   

16.
Given positive integers n,k,t, with 2?k?n, and t<2k, let m(n,k,t) be the minimum size of a family F of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains at least t members of F, and every (k-1)-subset of [n] contains at most t-1 members of F. For fixed k and t, we determine the order of magnitude of m(n,k,t). We also consider related Turán numbers T?r(n,k,t) and Tr(n,k,t), where T?r(n,k,t) (Tr(n,k,t)) denotes the minimum size of a family such that every k-subset of [n] contains at least t members of F. We prove that T?r(n,k,t)=(1+o(1))Tr(n,k,t) for fixed r,k,t with and n→∞.  相似文献   

17.
An n × n sign pattern Sn is potentially nilpotent if there is a real matrix having sign pattern Sn and characteristic polynomial xn. A new family of sign patterns Cn with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattern Cn. These nilpotent matrices are used together with a Jacobian argument to show that Cn is spectrally arbitrary, i.e., there is a real matrix having sign pattern Cn and characteristic polynomial for any real μi. Some results and a conjecture on minimality of these spectrally arbitrary sign patterns are given.  相似文献   

18.
Let G be a connected graph of order 3 or more and let be a coloring of the edges of G (where adjacent edges may be colored the same). For each vertex v of G, the color code of v is the k-tuple c(v)=(a1,a2,…,ak), where ai is the number of edges incident with v that are colored i (1?i?k). The coloring c is called detectable if distinct vertices have distinct color codes; while the detection number det(G) of G is the minimum positive integer k for which G has a detectable k-coloring. For each integer n?3, let DT(n) be the maximum detection number among all trees of order n and dT(n) the minimum detection number among all trees of order n. The numbers DT(n) and dT(n) are determined for all integers n?3. Furthermore, it is shown that for integers k?2 and n?3, there exists a tree T of order n having det(T)=k if and only if dT(n)?k?DT(n).  相似文献   

19.
Let A and S be subsets of the natural numbers. Let A′(n) be the number of partitions of n where each part appears exactly m times for some m?A. Let S(n) be the number of partitions of n into parts which are elements of S.  相似文献   

20.
A permutation graph is a simple graph associated with a permutation. Let cn be the number of connected permutation graphs on n vertices. Then the sequence {cn} satisfies an interesting recurrence relation such that it provides partitions of n! as . We also see that, if uniformly chosen at random, asymptotically almost all permutation graphs are connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号