首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetic isotope effects (KIEs) and computer modeling using density functional theory were used to approximate the transition state of human 5'-methylthioadenosine phosphorylase (MTAP). KIEs were measured on the arsenolysis of 5'-methylthioadenosine (MTA) catalyzed by MTAP and were corrected for the forward commitment to catalysis. Intrinsic KIEs were obtained for [1'-(3)H], [1'-(14)C], [2'-(3)H], [4'-(3)H], [5'-(3)H(2)], [9-(15)N], and [Me-(3)H(3)] MTAs. The primary intrinsic KIEs (1'-(14)C and 9-(15)N) suggest that MTAP has a dissociative S(N)1 transition state with its cationic center at the anomeric carbon and insignificant bond order to the leaving group. The 9-(15)N intrinsic KIE of 1.039 also establishes an anionic character for the adenine leaving group, whereas the alpha-primary 1'-(14)C KIE of 1.031 indicates significant nucleophilic participation at the transition state. Computational matching of the calculated EIEs to the intrinsic isotope effects places the oxygen nucleophile 2.0 Angstrom from the anomeric carbon. The 4'-(3)H KIE is sensitive to the polarization of the 3'-OH group. Calculations suggest that a 4'-(3)H KIE of 1.047 is consistent with ionization of the 3'-OH group, indicating formation of a zwitterion at the transition state. The transition state has cationic character at the anomeric carbon and is anionic at the 3'-OH oxygen, with an anionic leaving group. The isotope effects predicted a 3'-endo conformation for the ribosyl zwitterion, corresponding to a H1'-C1'-C2'-H2' torsional angle of 33 degrees. The [Me-(3)H(3)] and [5'-(3)H(2)] KIEs arise predominantly from the negative hyperconjugation of the lone pairs of sulfur with the sigma (C-H) antibonding orbitals. Human MTAP is characterized by a late S(N)1 transition state with significant participation of the phosphate nucleophile.  相似文献   

2.
Bacterial tRNA-specific adenosine deaminase (TadA) catalyzes the essential deamination of adenosine to inosine at the wobble position of tRNAs and is necessary to permit a single tRNA species to recognize multiple codons. The transition state structure of Escherichia coli TadA was characterized by kinetic isotope effects (KIEs) and quantum chemical calculations. A stem loop of E. coli tRNA(Arg2) was used as a minimized TadA substrate, and its adenylate editing site was isotopically labeled as [1'-(3)H], [5'-(3)H2], [1'-(14)C], [6-(13)C], [6-(15)N], [6-(13)C, 6-(15)N] and [1-(15)N]. The intrinsic KIEs of 1.014, 1.022, 0.994, 1.014 and 0.963 were obtained for [6-(13)C]-, [6-(15)N]-, [1-(15)N]-, [1'-(3)H]-, [5'-(3)H2]-labeled substrates, respectively. The suite of KIEs are consistent with a late SNAr transition state with a complete, pro-S-face hydroxyl attack and nearly complete N1 protonation. A significant N6-C6 dissociation at the transition state of TadA is indicated by the large [6-(15)N] KIE of 1.022 and corresponds to an N6-C6 distance of 2.0 A in the transition state structure. Another remarkable feature of the E. coli TadA transition state structure is the Glu70-mediated, partial proton transfer from the hydroxyl nucleophile to the N6 leaving group. KIEs correspond to H-O and H-N distances of 2.02 and 1.60 A, respectively. The large inverse [5'-(3)H] KIE of -3.7% and modest normal [1'-(3)H] KIE of 1.4% indicate that significant ribosyl 5'-reconfiguration and purine rotation occur on the path to the transition state. The late SNAr transition-state established here for E. coli TadA is similar to the late transition state reported for cytidine deaminase. It differs from the early SNAr transition states described recently for the adenosine deaminases from human, bovine, and Plasmodium falciparum sources. The ecTadA transition state structure reveals the detailed architecture for enzymatic catalysis. This approach should be readily transferable for transition state characterization of other RNA editing enzymes.  相似文献   

3.
Synthesis of [3'-2H]-labeled 5'-methylthioadenosine (MTA) derivatives permitted measurement of the [3'-2H] KIE of the reaction catalyzed by Streptococcus pneumoniae methylthioadenosine nucleosidase (spMTAN). The key [3'-2H] KIE revealed the partial 3'-OH polarization and H3'-endo-->exo ribosyl configuration at the spMTAN transition state. A new understanding of the transition state stabilization of spMTAN-catalyzed hydrolysis is uncovered in structural features at the spMTAN transition state.  相似文献   

4.
Adenosine deaminases (ADAs) from human, bovine, and Plasmodium falciparum sources were analyzed by kinetic isotope effects (KIEs) and shown to have distinct but related transition states. Human adenosine deaminase (HsADA) is present in most mammalian cells and is involved in B- and T-cell development. The ADA from Plasmodium falciparum (PfADA) is essential in this purine auxotroph, and its inhibition is expected to have therapeutic effects for malaria. Therefore, ADA is of continuing interest for inhibitor design. Stable structural mimics of ADA transition states are powerful inhibitors. Here we report the transition-state structures of PfADA, HsADA, and bovine ADA (BtADA) solved using competitive kinetic isotope effects (KIE) and density functional calculations. Adenines labeled at [6-13C], [6-15N], [6-13C, 6-15N], and [1-15N] were synthesized and enzymatically coupled with [1'-14C] ribose to give isotopically labeled adenosines as ADA substrates for KIE analysis. [6-13C], [6-15N], and [1-15N]adenosines reported intrinsic KIE values of (1.010, 1.011, 1.009), (1.005, 1.005, 1.002), and (1.004, 1.001, 0.995) for PfADA, HsADA, and BtADA, respectively. The differences in intrinsic KIEs reflect structural alterations in the transition states. The [1-15N] KIEs and computational modeling results indicate that PfADA, HsADA, and BtADA adopt early SNAr transition states, where N1 protonation is partial and the bond order to the attacking hydroxyl nucleophile is nearly complete. The key structural variation among PfADA, HsADA, and BtADA transition states lies in the degree of N1 protonation with the decreased bond lengths of 1.92, 1.55, and 1.28 A, respectively. Thus, PfADA has the earliest and BtADA has the most developed transition state. This conclusion is consistent with the 20-36-fold increase of kcat in comparing PfADA with HsADA and BtADA.  相似文献   

5.
The remote 5'-3H V/K kinetic isotope effect (KIE) observed in human thymidine phosphorylase (6.1%) is significantly larger than can be explained by the reaction chemistry. One hypothesis connects the 5'-3H KIE in purine nucleoside phosphorylase to that enzyme's SN1 transition state. The transition state of thymidine phosphorylase, however, is an SN2 nucleophilic displacement. Here we report equilibrium binding isotope effects sufficiently large to explain the presence of this substantial KIE in thymidine phosphorylase.  相似文献   

6.
Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found for the reactions with a halogen leaving group. This presumably is found because of the bulky (sterically hindered) leaving group in the tosylate reaction. From every prospective, the tosylate reaction is too different from the halogen reactions to be compared.  相似文献   

7.
Uridine phosphorylase catalyzes the reversible phosphorolysis of uridine and 2'-deoxyuridine to generate uracil and (2-deoxy)ribose 1-phosphate, an important step in the pyrimidine salvage pathway. The coding sequence annotated as a putative nucleoside phosphorylase in the Trypanosoma cruzi genome was overexpressed in Escherichia coli , purified to homogeneity, and shown to be a homodimeric uridine phosphorylase, with similar specificity for uridine and 2'-deoxyuridine and undetectable activity toward thymidine and purine nucleosides. Competitive kinetic isotope effects (KIEs) were measured and corrected for a forward commitment factor using arsenate as the nucleophile. The intrinsic KIEs are: 1'-(14)C = 1.103, 1,3-(15)N(2) = 1.034, 3-(15)N = 1.004, 1-(15)N = 1.030, 1'-(3)H = 1.132, 2'-(2)H = 1.086, and 5'-(3)H(2) = 1.041 for this reaction. Density functional theory was employed to quantitatively interpret the KIEs in terms of transition-state structure and geometry. Matching of experimental KIEs to proposed transition-state structures suggests an almost synchronous, S(N)2-like transition-state model, in which the ribosyl moiety possesses significant bond order to both nucleophile and leaving groups. Natural bond orbital analysis allowed a comparison of the charge distribution pattern between the ground-state and the transition-state models.  相似文献   

8.
Kinetic isotope effects (KIEs) were measured for methyl glucoside (4) hydrolysis on unlabeled material by NMR. Twenty-eight (13)C KIEs were measured on the acid-catalyzed hydrolysis of alpha-4 and beta-4, as well as enzymatic hydrolyses with yeast alpha-glucosidase and almond beta-glucosidase. The 1-(13)C KIEs on the acid-catalyzed reactions of alpha-4 and beta-4, 1.007(2) and 1.010(6), respectively, were in excellent agreement with the previously reported values (1.007(1), 1.011(2): Bennet and Sinnott, J. Am. Chem. Soc. 1986, 108, 7287). Transition state analysis of the acid-catalyzed reactions using the (13)C KIEs, along with the previously reported (2)H KIEs, confirmed that both reactions proceed with a stepwise D(N)A(N) mechanism and showed that the glucosyl oxocarbenium ion intermediate exists in an E(3) sofa or (4)H(3) half-chair conformation. (13)C KIEs showed that the alpha-glucosidase reaction also proceeded through a D(N)*A(N) mechanism, with a 1-(13)C KIE of 1.010(4). The secondary (13)C KIEs showed evidence of distortions in the glucosyl ring at the transition state. For the beta-glucosidase-catalyzed reaction, the 1-(13)C KIE of 1.032(1) demonstrated a concerted A(N)D(N) mechanism. The pattern of secondary (13)C KIEs was similar to the acid-catalyzed reaction, showing no signs of distortion. KIE measurement at natural abundance makes it possible to determine KIEs much more quickly than previously, both by increasing the speed of KIE measurement and by obviating the need for synthesis of isotopically labeled compounds.  相似文献   

9.
Kinetic isotope effects are determined for the enzyme‐catalyzed Claisen rearrangement of chorismate to prephenate using computational methods. The calculated kinetic isotope effects (KIEs) compare reasonably with the few available experimental values with both the theory and experiment obtaining a large KIE for the ether oxygen, indicating large polarization of the transition‐state geometry. Because there is a question of the extent that the experimental rate constants are for chemistry as the rate‐limiting step, the KIEs for all the atoms of the substrate are reported with the exception of the carboxylate groups. A substantial number of large regular and inverse isotope effects are predicted for the hydrogens on the cyclohexadienyl ring related to activation of the reactant and charge reorganization in the transition state. A large KIE is predicted for the hydrogen atom bound to the ether carbon atom because the largest valency change and charge transfer occurs at the ether bond in both the reactant and tansition state. Observation of the overall pattern of predicted KIEs would ensure that conditions are favorable for the rate‐limiting chemistry. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 287–292, 2003  相似文献   

10.
A new three-dimensional NMR experiment is described that yields five scalar or dipolar couplings from a single cross-peak between three spins. The method is based on the E.COSY principle and is demonstrated for the H1'-C1'-C2' fragment of ribose sugars in a uniformly 13C-enriched 24-nucleotide RNA stem-loop structure, for which a complete set of couplings was obtained for all nonmodified nucleotides. The values of the isotropic J couplings and the 13C1' and 13C2' chemical shifts define the sugar pucker. Once the sugar pucker is known, the five dipolar couplings between C1'-H1', C2'-H2', H1'-H2', C1'-H2', and C2'-H1', together with C1'-C2', C3'-H3', and C4'-H4' available from standard experiments, can be used to derive the five unknowns that define the local alignment tensor, thereby simultaneously providing information on relative orientation and dynamics of the ribose units. Data indicate rather uniform alignment for all stem nucleotides in the 24-nt stem-loop structure, with only a modest reduction in order for the terminal basepair, but significantly increased mobility in part of the loop region. The method is applicable to proteins, nucleic acids, and carbohydrates, provided 13C enrichment is available.  相似文献   

11.
[reaction: see text] The transition structures and alpha-carbon 12C/13C kinetic isotope effects for 22 S(N)2 reactions between methyl chloride and a wide variety of nucleophiles have been calculated using the B1LYP/aug-cc-pVDZ level of theory. Anionic, neutral, and radical anion nucleophiles were used to give a wide range of S(N)2 transition states so the relationship between the magnitude of the alpha-carbon kinetic isotope effect and transition-state structure could be determined. The results suggest that the alpha-carbon 12C/13C kinetic isotope effects for S(N)2 reactions will be large (near the experimental maximum) and that the curve relating the magnitude of the KIE to the percent transfer of the alpha-carbon from the nucleophile to the leaving group in the transition state has a broad maximum. This means very similar KIEs will be found for early, symmetric, and late transition states and that one cannot use the magnitude of these KIEs to estimate transition-state structure.  相似文献   

12.
Multiple kinetic isotope effects (KIEs) on deoxyadenosine monophosphate (dAMP) hydrolysis in 0.1 M HCl were used to determine the transition state (TS) structure and probe its intrinsic reactivity. The experimental KIEs revealed a stepwise (SN1) mechanism, with a discrete oxacarbenium ion intermediate. This is the first direct evidence for the deoxyribosyl oxacarbenium ion in solution. In 50% methanol/0.1 M HCl the products were deoxyribose 5-phosphate (dRMP) and alpha- and beta-methyl dRMP. The alpha-Me-dRMP/beta-Me-dRMP ratio was 8.5:1. Assuming that a free oxacarbenium ion is equally susceptible to nucleophilic attack on either face, this indicated that approximately 20% proceeded through a solvent-separated ion pair complex, or free oxacarbenium ion, a DN+AN mechanism, while approximately 80% of the reaction proceeded through a contact ion pair complex. The oxacarbenium ion lifetime was estimated at 10(-11)-10(-10) s. Computational transition states were found for ANDN, DN*AN, DN*AN, and DN+AN mechanisms using hybrid density functional theory calculations. After taking into account 20% of DN+AN, there was an excellent match of calculated to experimental KIEs for 80% of the reaction having a DN*AN mechanism. That is, C-N bond cleavage is reversible, with dAMP and the {oxacarbenium ion*adenine} complex in equilibrium. The first irreversible step is water attack on the oxacarbenium ion. The calculated 1'-14C KIE for a stepwise mechanism with irreversible C-N bond cleavage (DN*AN) was 1.052, in the range previously associated only with ANDN transition states, and close to the calculated ANDN value, 1.059. The 1'-14C KIE was strongly dependent on the adenine protonation state.  相似文献   

13.
Recombinant human thymidine phosphorylase catalyzes the reaction of arsenate with thymidine to form thymine and 2-deoxyribose 1-arsenate, which rapidly decomposes to 2-deoxyribose and inorganic arsenate. The transition-state structure of this reaction was determined using kinetic isotope effect analysis followed by computer modeling. Experimental kinetic isotope effects were determined at physiological pH and 37 degrees C. The extent of forward commitment to catalysis was determined by pulse-chase experiments to be 0.70%. The intrinsic kinetic isotope effects for [1'-(3)H]-, [2'R-(3)H]-, [2'S-(3)H]-, [4'-(3)H]-, [5'-(3)H]-, [1'-(14)C]-, and [1-(15)N]-thymidines were determined to be 0.989 +/- 0.002, 0.974 +/- 0.002, 1.036 +/- 0.002, 1.020 +/- 0.003, 1.061 +/- 0.003, 1.139 +/- 0.005, and 1.022 +/- 0.005, respectively. A computer-generated model, based on density functional electronic structure calculations, was fit to the experimental isotope effect. The structure of the transition state confirms that human thymidine phosphorylase proceeds through an S(N)2-like transition state with bond orders of 0.50 to the thymine leaving group and 0.33 to the attacking oxygen nucleophile. The reaction differs from the dissociative transition states previously reported for N-ribosyl transferases and is the first demonstration of a nucleophilic transition state for an N-ribosyl transferase. The large primary (14)C isotope effect of 1.139 can occur only in nucleophilic displacements and is the largest (14)C primary isotope effect reported for an enzymatic reaction. A transition state structure with substantial bond order to the attacking nucleophile and leaving group is confirmed by the slightly inverse 1'-(3)H isotope effect, demonstrating that the transition state is compressed by the impinging steric bulk of the nucleophile and leaving group.  相似文献   

14.
The chlorine leaving group kinetic isotope effects (KIEs) for the S(N)2 reactions between methyl chloride and a wide range of anionic, neutral, and radical anion nucleophiles were calculated in the gas phase and, in several cases, using a continuum solvent model. In contrast to the expected linear dependence of the chlorine KIEs on the C(alpha)-Cl bond order in the transition state, the KIEs fell in a very small range (1.0056-1.0091), even though the C(alpha)-Cl transition state bond orders varied widely from approximately 0.32 to 0.78, a range from reactant-like to very product-like. This renders chlorine KIEs, and possibly other leaving-group KIEs, less useful for studies of reaction mechanisms than commonly assumed. A partial explanation for this unexpected relationship between the C(alpha)-Cl transition state bond order and the magnitude of the chlorine KIE is presented.  相似文献   

15.
The determination of kinetic isotope effects (KIEs) for different reaction pathways and steps in a complex reaction network, where KIEs may affect the overall reaction in various different ways including dominant and minority pathways or the buildup of a reaction-inhibiting adlayer, is demonstrated for formic acid electrooxidation on a Pt film electrode by quantitative electrochemical in situ IR spectroscopic measurements under controlled mass-transport conditions. The ability to separate effects resulting from different contributions--which is not possible using purely electrochemical kinetic measurements--allows conclusions on the nature of the rate-limiting steps and their transition state in the individual reaction pathways. The potential-independent values of approximately 1.9 for the KIE of formic acid dehydration (CO(ad) formation) in the indirect pathway and approximately 3 for the CO(ad) coverage-normalized KIE of formic acid oxidation to CO2 (direct pathway) indicate that 1) C-H bond breaking is rate-limiting in both reaction steps, 2) the transition states for these reactions are different, and 3) the configurations of the transition states involve rather strong bonds to the transferred D/H species, either in the initial or in the final state, for the direct pathway and--even more pronounced--for formic acid dehydration (CO(ad) formation).  相似文献   

16.
A series of isotopically labeled natural substrate analogues (phenyl 5-N-acetyl-α-d-neuraminyl-(2→3)-β-d-galactopyranosyl-(1→4)-1-thio-β-d-glucopyranoside; Neu5Acα2,3LacβSPh, and the corresponding 2→6 isomer) were prepared chemoenzymatically in order to characterize, by use of multiple kinetic isotope effect (KIE) measurements, the glycosylation transition states for Vibrio cholerae sialidase-catalyzed hydrolysis reactions. The derived KIEs for Neu5Acα2,3LacβSPh for the ring oxygen ((18)V/K), leaving group oxygen ((18)V/K), C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.029 ± 0.002, 0.983 ± 0.001, 1.034 ± 0.002, and 1.043 ± 0.002, respectively. In addition, the KIEs for Neu5Acα2,6βSPh for C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.021 ± 0.001 and 1.049 ± 0.001, respectively. The glycosylation transition state structures for both Neu5Acα2,3LacβSPh and Neu5Acα2,6LacβSPh were modeled computationally using the experimental KIE values as goodness of fit criteria. Both transition states are late with largely cleaved glycosidic bonds coupled to pyranosyl ring flattening ((4)H(5) half-chair conformation) with little or no nucleophilic involvement of the enzymatic tyrosine residue. Notably, the transition state for the catalyzed hydrolysis of Neu5Acα2,6βSPh appears to incorporate a lesser degree of general-acid catalysis, relative to the 2,3-isomer.  相似文献   

17.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

18.
Rates, kinetic isotope effects (KIE), and Swain-Schaad exponents (SSE) have been calculated for a variety of isotopologues for the [1,5] shift in (Z)-1,3-pentadiene using mPW1K/6-31+G(d,p). Quantum mechanical effects along the reaction coordinate were incorporated with the zero-curvature tunneling (ZCT) model and with the multidimensional small curvature tunneling (SCT) model, which allows for coupling of modes perpendicular to the reaction coordinate. The latter model gives the best agreement with experimental rates and primary KIEs. The small quasiclassical primary KIE (2.6) is rationalized in terms of a nonlinear transition state. For sp3 to sp2 rehybridization, the quasiclassical alpha-secondary KIE shows an unusual inverse effect due to compression of the nonbonding hydrogens in the suprafacial transition state. SCT transmission coefficients (kappa) increase the rates by as much as one order of magnitude. Tunneling allows the reactant to evade 1-2.5 kcal/mol of the barrier depending on the isotope. Inclusion of tunneling in the secondary KIE increases it beyond the equilibrium isotope effect and converts the inverse effect (0.95) into a normal KIE (1.12). Tunneling was found to deflate the primary y SSE but by an amount too small to distinguish it from the quasiclassical SSE. On the other hand, when a specific labeling pattern is used, the difference between the quasiclassical secondary SSE (4.1) and the tunneling secondary SSE (2.3) may be sufficiently large to detect tunneling. The mixed secondary SSE shows even larger differences.  相似文献   

19.
The intramolecular kinetic isotope effect (KIE) for hydride transfer from 10-methyl-9,10-dihydroacridine to 1-benzyl-3-cyanoquinolinium ion has been found to be 5-6 by both (1)H NMR and mass spectrometry. This KIE is consistent with other hydride transfers. It is inconsistent with the high intermolecular KIEs derived by fitting to a two-step mechanism with a kinetically significant intermediate complex, and it is inconsistent with the strong temperature dependence of those KIEs. We therefore reject the two-step mechanism for this reaction, and we suggest that other cases proposed to follow this mechanism are in error.  相似文献   

20.
Polyanionic species have been obtained in high yield by a new route in the ring-opening reaction of cyclic oxonium [3,3'-Co(8-C4H8O2-1,2-C2B9H10)(1',2'-C2B9H11)] (2) by using carboxylic acids, Grignard reagents, and thiocarboranes as nucleophiles. The crystal structures of Na3(H2O)(C2H5OH)[1',3',5'-{3,3'-Co(8-O(CH2CH2O)2-1,2-C2B9H10)(1',2'-C2B9H11)}3-C6H3] and Na(H2O)[3,3'-Co(8-O(CH2CH2O)2C(O)CH3-1,2-C2B9H10)(1',2'-C2B9H11)] show that the chain contributes three or two oxygen atoms for coordination to Na(+), and interestingly, the [3,3'-Co(1,2-C2B9H11)2](-) moiety provides extra B-H coordination sites. These B-H...Na interactions in the solid state have also been confirmed by dynamic NMR studies in solution. These new polyanionic compounds that contain multiple carborane or metallacarborane clusters at their periphery may prove useful as new classes of boron neutron capture therapy compounds with enhanced water solubility and as a core to make a new class of dendrimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号