首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partitioned adaptive Runge-Kutta methods and their stability   总被引:4,自引:0,他引:4  
Summary This paper deals with the solution of partitioned systems of nonlinear stiff differential equations. Given a differential system, the user may specify some equations to be stiff and others to be nonstiff. For the numerical solution of such a system partitioned adaptive Runge-Kutta methods are studied. Nonstiff equations are integrated by an explicit Runge-Kutta method while an adaptive Runge-Kutta method is used for the stiff part of the system.The paper discusses numerical stability and contractivity as well as the implementation and usage of such compound methods. Test results for three partitioned stiff initial value problems for different tolerances are presented.  相似文献   

2.
Summary All rational approximations to exp(z) of order 2m– (m denotes the maximal degree of nominator and denominator) are given by a closed formula involving real parameters. Using the theory of order stars [9], necessary and sufficient conditions forA-stability (respectivelyI-stability) are given. On the basis of this characterization relations between the concepts ofA-stability and algebraic stability (for implicit Runge-Kutta methods) are investigated. In particular we can partly prove the conjecture that to any irreducibleA-stableR(z) of oderp0 there exist algebraically stable Runge-Kutta methods of the same order withR(z) as stability function.  相似文献   

3.
Summary GeneralizedA()-stable Runge-Kutta methods of order four with stepsize control are studied. The equations of condition for this class of semiimplicit methods are solved taking the truncation error into consideration. For application anA-stable and anA(89.3°)-stable method with small truncation error are proposed and test results for 25 stiff initial value problems for different tolerances are discussed.  相似文献   

4.
Summary Brown [1] introducedk-step methods usingl derivatives. Necessary and sufficient conditions forA 0-stability and stiff stability of these methods are given. These conditions are used to investigate for whichk andl the methods areA 0-stable. It is seen that for allk andl withk1.5 (l+1) the methods areA 0-stable and stiffly stable. This result is conservative and can be improved forl sufficiently large. For smallk andl A 0-stability has been determined numerically by implementing the necessary and sufficient condition.  相似文献   

5.
Résumé Dans cet article, nous modifions légèrement la définition de laB-stabilité donnée par J.C. Butcher [1] afin qu'elle s'applique à une plus large classe d'équations différentielles et nous donnons des caractérisations simples de cette propriété.
OnB-stability of the methods of Runge Kutta
Summary In this paper, we slightly modify the definition ofB-stability of Butcher [1], so as to cover a wider class of differential equations, and we give simple characterizations of this property.
  相似文献   

6.
Perturbed collocation and Runge-Kutta methods   总被引:3,自引:0,他引:3  
Summary It is well known thatsome implicit Runge-Kutta methods are equivalent to collocation methods. This fact permits very short and natural proofs of order andA, B, AN, BN-stability properties for this subclass of methods (see [9] and [10]). The present paper answers the natural question, ifall RK methods can be considered as a somewhat perturbed collocation. After having introduced this notion we give a proof on the order of the method and discuss their stability properties. Much of known theory becomes simple and beautiful.  相似文献   

7.
This paper deals with adapting Runge-Kutta methods to differential equations with a lagging argument. A new interpolation procedure is introduced which leads to numerical processes that satisfy an important asymptotic stability condition related to the class of testproblemsU(t)=U(t)+U(t–) with , C, Re()<–||, and >0. Ifc i denotes theith abscissa of a given Runge-Kutta method, then in thenth stept n–1t n :=t n–1+h of the numerical process our interpolation procedure computes an approximation toU(t n–1+c i h–) from approximations that have already been generated by the process at pointst j–1+c i h(j=1,2,3,...). For two of these new processes and a standard process we shall consider the convergence behaviour in an actual application to a given, stiff problem.  相似文献   

8.
Summary This paper deals with the solution of nonlinear stiff ordinary differential equations. The methods derived here are of Rosenbrock-type. This has the advantage that they areA-stable (or stiffly stable) and nevertheless do not require the solution of nonlinear systems of equations. We derive methods of orders 5 and 6 which require one evaluation of the Jacobian and oneLU decomposition per step. We have written programs for these methods which use Richardson extrapolation for the step size control and give numerical results.  相似文献   

9.
Equilibria of Runge-Kutta methods   总被引:2,自引:0,他引:2  
Summary It is known that certain Runge-Kutta methods share the property that, in a constant-step implementation, if a solution trajectory converges to a bounded limit then it must be a fixed point of the underlying differential system. Such methods are calledregular. In the present paper we provide a recursive test to check whether given method is regular. Moreover, by examining solution trajectories of linear equations, we prove that the order of ans-stage regular method may not exceed 2[(s+2)/2] and that the maximal order of regular Runge-Kutta method with an irreducible stability function is 4.  相似文献   

10.
This paper develops a general theory for a class of Runge-Kutta methods which are based, in addition to the stages of the current step, also on the stages of the previous step. Such methods have been introduced previously for the case of one and two stages. We show that for any numbers of stages methods of orderp withs+1 p 2s can be constructed. The paper terminates with a study of step size change and stability.  相似文献   

11.
Summary Recently the author defined the class of natural Runge-Kutta methods and observed that it includes all the collocation methods. The present paper is devoted to a complete characterization of this class and it is shown that it coincides with the class of the projection methods in some polynomial spaces.This work was supported by the Italian Ministero della Pubblica Istruzione, funds 40%  相似文献   

12.
Summary When variable stepsize variable formula methods (VSVFM's) are used in the solution of systems of first order differential equations instability arises sometimes. Therefore it is important to find VSVFM's whose zerostability properties are not affected by the choice of both the stepsize and the formula. The Adams VSVFM's are such methods. In this work a more general class of methods which contains the Adams VSVFM's is discussed and it is proved that the zero-stability of the class is not affected by the choice of the stepsize and of the formula.  相似文献   

13.
Summary Bulirsch and Stoer have shown how to construct asymptotic upper and lower bounds on the true (global) errors resulting from the solution by extrapolation of the initial value problem for a system of ordinary differential equations. It is shown here how to do this for any one-step method endowed with an asymptotically correct local error estimator. The one-step method can be changed at every step.This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04-76DP00789  相似文献   

14.
Summary In the analysis of discretization methods for stiff intial value problems, stability questions have received most part of the attention in the past.B-stability and the equivalent criterion algebraic stability are well known concepts for Runge-Kutta methods applied to dissipative problems. However, for the derivation ofB-convergence results — error bounds which are not affected by stiffness — it is not sufficient in many cases to requireB-stability alone. In this paper, necessary and sufficient conditions forB-convergence are determined.This paper was written while J. Schneid was visiting the Centre for Mathematics and Computer Science with an Erwin-Schrödinger stipend from the Fonds zur Förderung der wissenschaftlichen Forschung  相似文献   

15.
Adams methods for neutral functional differential equations   总被引:1,自引:0,他引:1  
Summary In this paper Adams type methods for the special case of neutral functional differential equations are examined. It is shown thatk-step methods maintain orderk+1 for sufficiently small step size in a sufficiently smooth situation. However, when these methods are applied to an equation with a non-smooth solution the order of convergence is only one. Some computational considerations are given and numerical experiments are presented.  相似文献   

16.
Summary Brown introducedk-step methods usingl derivatives. We investigate for whichk andl the methods are stable or unstable. It is seen that to anyl the method becomes unstable fork large enough. All methods withk2(l+1) are stable. Fork=1,2,..., 18 there exists a k such that the methods are stable for anyl k and unstable for anyl < k . The k are given.  相似文献   

17.
Multistep collocation methods for initial value problems in ordinary differential equations are known to be a subclass of multistep Runge-Kutta methods and a generalisation of the well-known class of one-step collocation methods as well as of the one-leg methods of Dahlquist. In this paper we derive an error estimation method of embedded type for multistep collocation methods based on perturbed multistep collocation methods. This parallels and generalizes the results for one-step collocation methods by Nørsett and Wanner. Simple numerical experiments show that this error estimator agrees well with a theoretical error estimate which is a generalisation of an error estimate first derived by Dahlquist for one-leg methods.  相似文献   

18.
Summary The right-hand sides of a system of ordinary differential equations may be discontinuous on a certain surface. If a trajectory crossing this surface shall be computed by a one-step method, then a particular numerical analysis is necessary in a neighbourhood of the point of intersection. Such an analysis is presented in this paper. It shows that one can obtain any desired order of convergence if the method has an adequate order of consistency. Moreover, an asymptotic error theory is developed to justify Richardson extrapolation. A general one-step method is constructed satisfying the conditions of the preceding theory. Finally, a simplified Newton iteration scheme is used to implement this method.  相似文献   

19.
Summary In this paper, a general class ofk-step methods for the numerical solution of ordinary differential equations is discussed. It is shown that methods with order of consistencyq have order of convergence (q+1) if a very simple condition is satisfied. This result gives a new aspect to previous results of Spijker; it also serves as a starting point for a new theory of cyclick-step methods, completing an approach of Donelson and Hansen. It facilitates the practical determination of high-order cyclick-step methods, especially of stiffly stable,k-step methods.  相似文献   

20.
Summary High order implicit integration formulae with a large region of absolute stability are developed for the approximate numerical integration of both stiff and non-stiff systems of ordinary differential equations. The algorithms derived behave essentially like one step methods and are demonstrated by direct application to certain particular examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号