首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel 1D chain organic-inorganic hybrid polyoxovanadium borate Na[V(12)B(16)O(50)(OH)(7)(en)](2)(enH(2))(6)(enH)(2)(OH)(H(2)O)(19) (1, en = ethylenediamine), based on a [V(12)B(16)O(50)(OH)(7)(en)](7-) cluster unit, has been hydrothermally synthesized and characterized. Interestingly, organic amine is incorporating into the V(12)B(16) clusters.  相似文献   

2.
The encapsulation of the complex [Ni(dto)(2)](2-) within an oxothiododecamolybdic cyclic cluster has been investigated. The resulting molybdenum ring, [Mo(12)O(12)S(12)(OH)(12)(Ni(dto)(2))](2-), corresponds to the first example of the {Mo(2)O(2)S(2)}-based assembly arranged around a 3d transition-metal complex. It was unambiguously characterized in the solid state and in solution by FT-IR spectroscopy, single-crystal X-ray diffraction, NMR, UV-visible spectroscopy, and electrospray ionization-high-resolution mass spectrometry (ESI-HRMS). The latter technique revealed to be a powerful tool for the characterization of templated molybdenum ring systems in solution and gave excellent results in high resolution. The electronic spectrum of [Mo(12)O(12)S(12)(OH)(12)(Ni(dto)(2))](2-) evidenced a strong red shift of the LMCT bands attributed to the complex [Ni(dto)(2)](2-), suggesting significant variations of the electronic properties upon its encapsulation within the Mo(12) ring. These differences were demonstrated by electrochemical studies in CH(3)CN, which also revealed, for both compounds [Ni(dto)(2)](2-) and [Mo(12)O(12)S(12)(OH)(12)(Ni(dto)(2))](2-), electrocatalytic properties for the reduction of protons. These results evidence the ability of dithioxalato complexes to act as electrocatalysts for the hydrogen evolution reaction (HER) and confirm such a property for oxothiomolybdenum rings.  相似文献   

3.
Lee TB  McKee ML 《Inorganic chemistry》2012,51(7):4205-4214
The reduction potentials (E°(Red) versus SHE) of hypercloso boron hydrides B(n)H(n) (n = 6-13) and B(12)X(12) (X = F, Cl, OH, and CH(3)) in water have been computed using the Conductor-like Polarizable Continuum Model (CPCM) and the Solvation Model Density (SMD) method for solvation modeling. The B3LYP/aug-cc-pvtz and M06-2X/aug-cc-pvtz as well as G4 level of theory were applied to determine the free energies of the first and second electron attachment (ΔG(E.A.)) to boron clusters. The solvation free energies (ΔG(solv)) greatly depend on the choice of the cavity set (UAKS, Pauling, or SMD) while the dependence on the choice of exchange/correlation functional is modest. The SMD cavity set gives the largest ΔΔG(solv) for B(n)H(n)(0/-) and B(n)H(n)(-/2-) while the UAKS cavity set gives the smallest ΔΔG(solv) value. The E°(Red) of B(n)H(n)(-/2-) (n = 6-12) with the G4/M06-2X(Pauling) (energy/solvation(cavity)) combination agrees within 0.2 V of experimental values. The experimental oxidative stability (E(1/2)) of B(n)X(n)(2-) (X = F, Cl, OH, and CH(3)) is usually located between the values predicted using the B3LYP and M06-2X functionals. The disproportionation free energies (ΔG(dpro)) of 2B(n)H(n)(-) → B(n)H(n) + B(n)H(n)(2-) reveal that the stabilities of B(n)H(n)(-) (n = 6-13) to disproportionation decrease in the order B(8)H(8)(-) > B(9)H(9)(-) > B(11)H(11)(-) > B(10)H(10)(-). The spin densities in B(12)X(12)(-) (X = F, Cl, OH, and CH(3)) tend to delocalize on the boron atoms rather than on the exterior functional groups. The partitioning of ΔG(solv)(B(n)H(n)(2-)) over spheres allows a rationalization of the nonlinear correlation between ΔG(E.A.) and E°(Red) for B(6)H(6)(-/2-), B(11)H(11)(-/2-), and B(13)H(13)(-/2-).  相似文献   

4.
Interaction of ZnCl(2) with Hpko (Hpko, di-2-pyridyl-ketonoxime) results in the formation of a uninuclear Zn(Hpko)Cl(2) (1) compound or in a 12-membered tetranuclear metallacrown (OH)(2)[inv12-MC(Zn(II)N(pko))-4]Cl(2) (2) depending on the pH of the mother solution. The addition of H(3)shi (H(3)shi, salicylhydroxamic acid) leads to the formation of the octanuclear 12-membered tetranuclear metallacrown [Zn(2)]([Zn(2)(pko)(4)][12-MC(Zn(II)N(shi))-4](CH(3)OH)(2)) (3). The metallacrown core of 2 is characterized as "inverse" because the zinc atoms, rather than oxygen atoms, are oriented toward the central cavity. Two triply bridging hydroxides are accommodated in the center of the metallacrown ring. The pko(-) ligands form a propeller configuration that imposes absolute stereoisomerism with Lambda and Delta chirality. Each hydroxo oxygen bridges two octahedral zinc atoms and a tetrahedral one. The octanuclear cluster Zn(8)(shi)(4)(pko)(4)(CH(3)OH)(2) contains a 12-membered tetranuclear metallacrown core constructed by four Zn metal atoms and four shi(3-) ligands. So, a part of the cluster can be described as having the formally anionic [12-MC(Zn(II)N(shi))-4](4-) core. Two of the zinc atoms are in octahedral coordination environment while for the other two the geometry is best described as distorted trigonal bipyramidal. The metallacrown core accommodates a binuclear compound with the formula [Zn(2)(pko)(4)]. Two of the ring metal ions create binuclear units with two zinc ions, respectively, with two oxamato oxygens, and two phenolato oxygens, of the four interlinked shi(3-) ligands acting as bridging atoms.  相似文献   

5.
Nanospheric hydroxo-bridged clusters of [M(20)(OH)(12)(maleate)(12)(Me(2)NH)(12)](BF(4))(3)(OH)·nH(2)O (M = Co (1), Ni (2)) with O(h) symmetry were afforded under hydrothermal condition with Co(BF(4))(2)·6H(2)O/Ni(BF(4))(2)·6H(2)O and fumaric acid in a DMF/EtOH mixed solvent. They are characterized by elemental analysis, IR, and X-ray diffraction. X-ray single crystal diffraction analyses show that these two complexes are isostructural containing an ideally cubic M(8) core in that each two M atoms are doubly bridged at the edges by one OH(-) and one maleate, while these OH(-) and maleate groups are coordinated further by exterior identical 12 M atoms which construct a perfect M(12) icosahedron to encapsulate the cubic core. To our knowledge, such large clusters with O(h) symmetry are seldom. The variable-temperature magnetic susceptibility studies reveal that these two isostructures exhibit antiferromagnetic interactions.  相似文献   

6.
This paper reports on a kinetic and theoretical study into the borate mediated reaction of dimethyl sulfide with hydrogen peroxide in both acid and alkaline conditions. At high pH, whilst the kinetic data is consistent with the catalytic species being monoperoxoborate, formed from the rapid equilibrium between hydrogen peroxide and boric acid, DFT calculations show that this species is in fact less reactive than hydrogen peroxide, requiring us to seek an alternative catalytic mechanism. DFT provides an important insight for this, showing that although boric acid and peroxoboric acid are primarily Lewis acids, they can exhibit a small degree of Br?nsted acidity, allowing, respectively, the B(O)(OH)(2)(-) and HOOB(OH)(O)(-) anions to exist in small concentrations. Whilst the peroxoborate anion, HOOB(OH)(O)(-), is predicted to have only marginal catalytic activity, its tautomer, dioxaborirane, (HO)(2)BO(2)(-), a three membered cyclic peroxide, has a very low activation barrier of 2.8 kcal/mol. Hence, even though dioxaborirane is likely to be present in very low concentrations, it is still sufficiently reactive for overall rate enhancements to be observed for this system. This is the first literature report of this species. The observed low selectivity observed for borate catalysed reactions of hydrogen peroxide with a range of substituted phenyl methyl sulfides in our previous study (D. M. Davies, M. E. Deary, K. Quill and R. A. Smith, Chem.-Eur. J. 2005, 11, 3552-3558) is further evidence in favour of a highly reactive catalytic species. At low pH, kinetic data shows that borate catalyses the reaction between hydrogen peroxide and dimethyl sulfide; this is supported by DFT calculations that predict peroxoboric acid to be an effective catalytic intermediate, with an energy barrier of 7.4 kcal mol(-1) compared to 10.1 kcal mol(-1) for the uncatalysed system. Nevertheless, the overall contribution of this pathway is small because of the unfavourable equilibrium between hydrogen peroxide and boric acid to form peroxoboric acid.  相似文献   

7.
The synthesis and structure of the isostructural acentric compounds Sr(3)Be(2)B(5)O(12)(OH) (1) and Ba(3)Be(2)B(5)O(12)(OH) (2) are reported for the first time. These compounds crystallize in the space group R3m, and the unit cell parameters are a = 10.277(15) ? and c = 8.484(17) ? for 1 and a = 10.5615(15) ? and c = 8.8574(18) ? for 2. The structures consist of a network of [Be(2)B(4)O(12)(OH)] units interwoven with a network consisting of MO(9) polyhedra (M = Sr, Ba) and BO(3) triangles and exemplify how acentric building blocks such as [BO(3)](3-), [BO(4)](5-), and [BeO(4)](6-) can be especially suitable to build noncentrosymmetric long-range structures. Both networks are centered on the 3-fold rotation axis and present themselves in alternating fashion along [001]. Acentricity is imparted by the alignment of the polarities of BO(3) and BeO(4) environments. Infrared spectroscopy has been used to confirm the local geometries of B and Be, as well as the presence of hydroxide in the crystal structure. Another interesting feature of these compounds is the presence of disorder involving Be and B at the tetrahedral Be site. The degree of the disorder has been confirmed by observing a noticeable shortening of average Be-O bond distances.  相似文献   

8.
The adsorption qualities of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+), a polycation with ε-Keggin structure, and its stability in contact with anionic cellulosic materials, was investigated under different concentration and ionic strength conditions. The cellulosic materials employed were two different fully bleached fibre materials, carboxyl methyl cellulose (CMC), and a spin-coated cellulose model surface. As analytical techniques, pH-measurements, potentiometric titrations, ICP-OES, QCM-D, equilibrium calculations and Extended X-ray Absorption Fine Structure (EXAFS) were used. The adsorption is substantial and the addition of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) to a fibre suspension results in a rapid decrease in pH, followed by a small and slow increase in pH. This behaviour can be explained as due to a rapid and strong (log β>2) equilibrium adsorption of intact GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) ions, followed by a slow, and minor, 3-8%, decomposition into different monomers. Alternative layer by layer adsorption of this ion, and CMC, on a spin-coated cellulose model surface constitutes further evidence for the strong interactions between the anionic cellulose materials and GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+). It is shown that the adsorption observed could not be described as due to an unspecific Donnan adsorption behaviour, neither of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) nor Ga and Al monomers, and specific surface complex formation is therefore discussed and applied. The (≡COO)(7)GaO(4)Al(12)(OH)(24)(H(2)O)(12) species found to explain the pH- and metal adsorption data should be considered strictly as a stoichiometric entity.  相似文献   

9.
The dicesium salt of the icosahedral borane anion dodecahydroxy-closo-dodecaborate(2-), closo-Cs(2)B(12)(OH)(12), Cs(2)4, was prepared using an improved synthetic pathway. Heating cesium dodecahydro-closo-dodecaborate, closo-Cs(2)B(12)H(12), Cs(2)1, with 30% hydrogen peroxide added in successive increments at 105-110 degrees C provided Cs(2)4 in 95% yield. Reaction progress was monitored using (1)H-decoupled (11)B NMR while (17)O NMR provides the most reliable way to detect the presence of peroxides in the reaction solution. The reaction may be safely increased in scale to afford Cs(2)4 in multigram quantities.  相似文献   

10.
The first plutonium(III) borate, Pu(2)[B(12)O(18)(OH)(4)Br(2)(H(2)O)(3)]·0.5H(2)O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.  相似文献   

11.
The influence of rigid or semirigid dicarboxylate anions, terephtalate (TerP(2-)), isophtalate (IsoP(2-)), and phenylenediacetate (PDA(2-)) on the self-condensation process of the [Mo(2)O(2)S(2)](2+) dioxothio cation has been investigated. Three new molybdenum rings, [Mo(12)O(12)S(12)(OH)(12)(TerP)](2-) ([Mo(12)TerP](2-)), [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(4)(PDA)(2)](4-) ([Mo(16)(PDA)(2)](4-)), and [Mo(16)O(16)S(16)(OH)(16)(H(2)O)(2)(IsoP)(2)](4-) ([Mo(16)(IsoP)(2)](4-)) have been isolated and unambiguously characterized in the solid state by single-crystal X-ray studies and in solution by various NMR methods and especially by diffusion-correlated NMR ((1)H DOSY) spectroscopy, which was shown to be a powerful tool for the characterization and speciation of templated molybdenum ring systems in solution. Characterization by FT-IR and elemental analysis are also reported. The dynamic and thermodynamic properties of both the sixteen-membered rings were studied in aqueous medium. Specific and distinct behaviors were revealed for each system. The IsoP(2-)/[Mo(2)O(2)S(2)](2+) system gave rise to equilibrium, involving mono-templated [Mo(12)IsoP](2-) and bis-templated [Mo(16)(IsoP)(2)](4-) ions. Thermodynamic parameters have been determined and showed that the driving-force for the formation of the [Mo(16)(IsoP)(2)](4-) is entropically governed. However, whatever the conditions (temperature, proportion of reactants), the PDA(2-)/[Mo(2)O(2)S(2)](2+) system led only to a single compound, the [Mo(16)(PDA)(2)](4-) ion. The latter exhibits dynamic behavior, consistent with the gliding of both the stacked aromatic groups. Stability and dynamics of both Mo(16) rings was related to weak hydrophobic or pi-pi stacking inter-template interactions and inner hydrogen-bond network occurring within the [Mo(16)(IsoP)(2)](4-) and [Mo(16)(PDA)(2)](4-) ions.  相似文献   

12.
A novel aluminoborate (NH(4))(6)[C(5)NH(12)](6)[Al(12)B(65)O(105)(OH)(33)]·(H(2)O)(15) (QD-6), has been synthesized under mild hydrothermal conditions and characterized by IR, elemental analysis, TGA, powder and single-crystal X-ray diffractions. This compound crystallizes in the rhombohedral space group R3 (No. 148) with the lattice constants a = 23.7421(2) ?, c = 24.7699(3) ?, V = 12091.9(2) ?(3), and Z = 3. QD-6 consists of two unprecedented aluminoborate clusters, [Al(6)B(34)O(54)(OH)(18)](6-) and [Al(6)B(31)O(51)(OH)(15)](6-), which are built from the same hexagon-like [B@Al(6)O(24)] clusters and [B(11)O(17)(OH)(6)] or [B(10)O(16)(OH)(5)] polyborates.  相似文献   

13.
The water-soluble endohedral gadofullerene derivatives, Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), have been characterized with regard to their MRI contrast agent properties. Water-proton relaxivities have been measured in aqueous solution at variable temperature (278-335 K), and for the first time for gadofullerenes, relaxivities as a function of magnetic field (5 x 10(-4) to 9.4 T; NMRD profiles) are also reported. Both compounds show relaxivity maxima at high magnetic fields (30-60 MHz) with a maximum relaxivity of 10.4 mM(-1) s(-1) for Gd@C(60)[C(COOH)(2)](10) and 38.5 mM(-1) s(-1) for Gd@C(60)(OH)(x) at 299 K. Variable-temperature, transverse and longitudinal (17)O relaxation rates, and chemical shifts have been measured at three magnetic fields (B = 1.41, 4.7, and 9.4 T), and the results point exclusively to an outer sphere relaxation mechanism. The NMRD profiles have been analyzed in terms of slow rotational motion with a long rotational correlation time calculated to be tau(R)(298) = 2.6 ns. The proton exchange rate obtained for Gd@C(60)[C(COOH)(2)](10) is k(ex)(298) = 1.4 x 10(7) s(-1) which is consistent with the exchange rate previously determined for malonic acid. The proton relaxivities for both gadofullerene derivatives increase strongly with decreasing pH (pH: 3-12). This behavior results from a pH-dependent aggregation of Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH)(2)](10), which has been characterized by dynamic light scattering measurements. The pH dependency of the proton relaxivities makes these gadofullerene derivatives prime candidates for pH-responsive MRI contrast agent applications.  相似文献   

14.
Per-B-hydroxylation of a polyhedral borane anion has been demonstrated by the catalytic hydroxylation of icosahedral [closo-B(12)H(12)](2-) using soft electrophiles such as platinum group metal catalysts or iodine cation. A new route to [closo-B(12)(OH)(12)](2-) from [closo-B(12)H(12)](2-) without the use of H(2)O(2) oxidant provides an alternative hydroxylation process.  相似文献   

15.
The UV absorbance and photochemical decomposition kinetics of hydrogen peroxide in borate/boric acid buffers were investigated as a function of pH, total peroxide concentration, and total boron concentration. At higher pH borate/boric acid inhibits the photodecomposition of hydrogen peroxide (molar absorptivity and quantum yield of H(2)O(2) and HO(2) (-), (19.0+/-0.3) M(-1) cm(-1) and 1, and (237+/-7) M(-1) cm(-1) and 0.8+/-0.1, respectively). The results are consistent with the equilibrium formation of the anions monoperoxoborate, K(BOOH)=[H(+)][HOOB(OH)(3) (-)]/([B(OH)(3)][H(2)O(2)]), 2.0 x 10(-8), R. Pizer, C. Tihal, Inorg. Chem. 1987, 26, 3639-3642, and monoperoxodiborate, K(BOOB)=[BOOB(2-)]/([B(OH)(4) (-)][HOOB(OH)(3) (-)]), 1.0+/-0.3 or 4.3+/-0.9, depending upon the conditions, with molar absorptivity, (19+/-1) M(-1) cm(-1) and (86+/-15) M(-1) cm(-1), respectively, and respective quantum yields, 1.1+/-0.1 and 0.04+/-0.04. The low quantum yield of monoperoxodiborate is discussed in terms of the slower diffusion apart of incipient (.)OB(OH)(3) (-) radicals than may be possible for (.)OH radicals, or a possible oxygen-bridged cyclic structure of the monoperoxodiborate.  相似文献   

16.
Two novel compounds, (L(1)H)(2)[SiF(6)] x 2H(2)O (1) and (L(2)H)(2)[SiF(5)(H(2)O)](2) x 3H(2)O (2), resulting from the reactions of H(2)SiF(6) with 4'-aminobenzo-12-crown-4 (L(1)) and monoaza-12-crown-4 (L(2)), respectively, were studied by X-ray diffraction and characterised by IR and (19)F NMR spectroscopic methods. Both complexes have ionic structures due to the proton transfer from the fluorosilicic acid to the primary amine group in L(1) and secondary amine group incorporated into the macrocycle L(2). The structure of 1 is composed of [SiF(6)](2-) centrosymmetric anions, N-protonated cations (L(1)H)(+), and two water molecules, all components being bound in the layer through a system of NH[...]F, NH[...]O and OH[...]F hydrogen bonds. The [SiF(6)](2-) anions and water molecules are assembled into inorganic negatively-charged layers via OH[dot dot dot]F hydrogen bonds. The structure of 2 is a rare example of stabilisation of the complex anion [SiF(5)(H(2)O)](-), the labile product of hydrolytic transformations of the [SiF(6)](2-) anion in an aqueous solution. The components of 2, i.e., [SiF(5)(H(2)O)](-), (L(2)H)(+), and water molecules, are linked by a system of NH[...]F, NH[...]O, OH[...]F, OH[dot dot dot]O hydrogen bonds. In a way similar to 1, the [SiF(5)(H(2)O)](-) anions and water molecules in 2 are combined into an inorganic negatively-charged layer through OH[...]F and OH[...]O interactions.  相似文献   

17.
The nonmetal cation polyborate salt of stoichiometry [H(2)en](2)[B(11)O(18)(OH)]·7H(2)O is obtained from the reaction of 1,2-diaminoethane and boric acid (1:5 ratio) in H(2)O/MeOH. An X-ray crystallographic study of the product reveals that the polyborate moiety is composed of two isolated hydrated polyborate anions: [B(4)O(5)(OH)(4)](2-) and [B(7)O(9)(OH)(5)](2-). The structure is templated by the cations with the anions forming a supramolecular H-bonded network, augmented by additional H-bonds involving the waters of crystallization and the cations.  相似文献   

18.
The first synthesis of analogues of the natural hormone 1alpha,25-dihydroxyvitamin D(3) (1a) with substituents at C-12 is reported. The following are the relative affinities of the novel compounds for the vitamin D receptor (VDR) compared to that of 1a (100%): 1alpha,12alpha,25-(OH)(3)-D(3) (1b, 1%), 1alpha,25-(OH)(2)-12-methylene-D(3) (1c, 50%), and 1alpha,25-(OH)(2)-12beta-methyl-D(3) (1d, 440%). [structure: see text]  相似文献   

19.
The geometries, energies and vibrational frequencies of various polyborates in both gaseous and aqueous phase were calculated at the B3LYP/aug-cc-pVDZ level. The calculated total symmetrical stretching Raman shifts of B(OH)(3), B(OH)(4)(-), B(2)O(OH)(4), B(2)O(OH)(5)(-), B(2)O(OH)(6)(2-), B(3)O(3)(OH)(3), B(3)O(3)(OH)(4)(-), B(3)O(3)(OH)(5)(2-), B(3)O(3)(OH)(6)(3-), B(4)O(5)(OH)(4)(2-) and B(5)O(6)(OH)(4)(-) were assigned to 877.40, 735.33, 785.22, 792.90, 696.79, 587.72, 599.06, 740.16, 705.01, 551.67 and 521.04cm(-1), respectively. The results can be used as the characteristic frequency for polyborates in aqueous phase at room temperature. At least six types of polyborates B(OH)(3), B(OH)(4)(-), B(3)O(3)(OH)(4)(-), B(3)O(3)(OH)(5)(2-), B(4)O(5)(OH)(4)(2-) and B(5)O(6)(OH)(4)(-), occur in aqueous solutions at ambient temperature. The chemical species distribution and the relevant interaction mechanisms among polyborates in the solutions were also suggested.  相似文献   

20.
The mechanism of the reaction of trans-ArPdBrL(2) (Ar=p-Z-C(6)H(4), Z=CN, H; L=PPh(3)) with Ar'B(OH)(2) (Ar'=p-Z'-C(6)H(4), Z'=H, CN, MeO), which is a key step in the Suzuki-Miyaura process, has been established in N,N-dimethylformamide (DMF) with two bases, acetate (nBu(4)NOAc) or carbonate (Cs(2)CO(3)) and compared with that of hydroxide (nBu(4)NOH), reported in our previous work. As anionic bases are inevitably introduced with a countercation M(+) (e.g., M(+)OH(-)), the role of cations in the transmetalation/reductive elimination has been first investigated. Cations M(+) (Na(+), Cs(+), K(+)) are not innocent since they induce an unexpected decelerating effect in the transmetalation via their complexation to the OH ligand in the reactive ArPd(OH)L(2), partly inhibiting its transmetalation with Ar'B(OH)(2). A decreasing reactivity order is observed when M(+) is associated with OH(-): nBu(4)N(+) > K(+) > Cs(+) > Na(+). Acetates lead to the formation of trans-ArPd(OAc)L(2), which does not undergo transmetalation with Ar'B(OH)(2). This explains why acetates are not used as bases in Suzuki-Miyaura reactions that involve Ar'B(OH)(2). Carbonates (Cs(2)CO(3)) give rise to slower reactions than those performed from nBu(4)NOH at the same concentration, even if the reactions are accelerated in the presence of water due to the generation of OH(-). The mechanism of the reaction with carbonates is then similar to that established for nBu(4)NOH, involving ArPd(OH)L(2) in the transmetalation with Ar'B(OH)(2). Due to the low concentration of OH(-) generated from CO(3)(2-) in water, both transmetalation and reductive elimination result slower than those performed from nBu(4)NOH at equal concentrations as Cs(2)CO(3). Therefore, the overall reactivity is finely tuned by the concentration of the common base OH(-) and the ratio [OH(-)]/[Ar'B(OH)(2)]. Hence, the anionic base (pure OH(-) or OH(-) generated from CO(3)(2-)) associated with its countercation (Na(+), Cs(+), K(+)) plays four antagonist kinetic roles: acceleration of the transmetalation by formation of the reactive ArPd(OH)L(2), acceleration of the reductive elimination, deceleration of the transmetalation by formation of unreactive Ar'B(OH)(3)(-) and by complexation of ArPd(OH)L(2) by M(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号