首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variational Monte Carlo method is applied to calculate ground‐state energies of some cations and anions of the first‐row atoms. Accurate values providing between 80 and 90% of the correlation energy are obtained. Explicitly correlated wave functions including up to 42 variational parameters are used. The nondynamic correlation due to the 2s ? 2p near degeneracy effect is included by using a multideterminant wave function. The variational free parameters have been fixed by minimizing the energy that has shown to be a more convenient functional than the variance of the local energy, which is the most commonly employed method in variational Monte Carlo calculations. The energies obtained improve previous works using similar wave functions. © 2002 Wiley Periodicals, Inc.; DOI 10.1002/qua.10125  相似文献   

2.
We show that a simple correlated wave function, obtained by applying a Jastrow correlation term to an antisymmetrized geminal power, based upon singlet pairs between electrons, is particularly suited for describing the electronic structure of molecules, yielding a large amount of the correlation energy. The remarkable feature of this approach is that, in principle, several resonating valence bonds can be dealt simultaneously with a single determinant, at a computational cost growing with the number of electrons similar to more conventional methods, such as Hartree-Fock or density functional theory. Moreover we describe an extension of the stochastic reconfiguration method, which was recently introduced for the energy minimization of simple atomic wave functions. Within this extension the atomic positions can be considered as further variational parameters, which can be optimized together with the remaining ones. The method is applied to several molecules from Li(2) to benzene by obtaining total energies, bond lengths and binding energies comparable with much more demanding multiconfiguration schemes.  相似文献   

3.
A new procedure is presented for introducing arbitrary orbital-orthogonality constraints in the variational optimization of otherwise nonorthogonal multiconfiguration electronic wave functions. It is based on suitable analytical changes to the expressions for the first and second derivatives of the electronic energy with respect to the independent variational parameters, and can be applied in the presence of symmetry constraints. It is tested using a second-derivative optimization procedure, the Optimized Basis Set -- Generalized Multiconfiguration Spin-Coupled (OBS-GMCSC) approach, that can treat basis-function exponential parameters as variational parameters, to be optimized simultaneously with configuration, spin-coupling, and orbital coefficients. This enables rigorous optimization of basis-set exponential parameters even for fully orthogonal multiconfiguration wave functions. Test calculations are carried out, with optimized even-tempered basis sets, on Li(2) and on the CH radical. For the latter, special attention is paid to the electronic spin density at the nuclei.  相似文献   

4.
It is advocated to carry out an optimization procedure, which is based upon the variational method, in such a way that the optimum values of the variational parameters are expressed as functions of physical constants, such as the atomic number, Z. The three stages involved in this treatment are illustrated by the optimization of nine correlated wave functions, which describe the ground states of atomic two-electron systems. An analysis of the Z-expansions of the total energies associated with these functions leads to the concept of a class of variational functions. The performances of functions belonging to the same class differ only marginally, especially at larger values of Z. Consequently, the concept of class may be used to bring some order in the plethora of variational functions. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
We have implemented the excited electronic state calculations for a helium atom by the transcorrelated variational Monte Carlo (TC-VMC) method. In this method, Jastrow-Slater-type wave function is efficiently optimized not only for the Jastrow factor but also for the Slater determinant. Since the formalism for the TC-VMC method is based on the variance minimization, excited states as well as the ground state calculations are feasible. It is found that both the first and the second excitation energies given by TC-VMC are much closer to the experimental data than those given by the variational Monte Carlo method with using the Hartree-Fock orbitals. The successful results in the TC-VMC method are considered to be due to the nodal optimization of the wave functions.  相似文献   

6.
We took the complete nonrelativistic Hamiltonians for the LiH and LiH- systems, as well as their deuterated isotopomers, we separated the kinetic energy of the center of mass motion from the Hamiltonians, and with the use of the variational method we optimized the ground-state nonadiabatic wave functions for the systems expanding them in terms of n-particle explicitly correlated Gaussian functions. With 3600 functions in the expansions we obtained the lowest ever ground-state energies of LiH, LiD, LiH-, and LiD- and these values were used to determine LiH and LiD electrons affinities (EAs) yielding 0.330 30 and 0.327 13 eV, respectively. The present are the first high-accuracy ab initio quantum mechanical calculations of the LiH and LiD EAs that do not assume the Born-Oppenheimer approximation. The obtained EAs fall within the uncertainty brackets of the experimental results.  相似文献   

7.
We elaborate on the theory for the variational solution of the Schro?dinger equation of small atomic and molecular systems without relying on the Born-Oppenheimer paradigm. The all-particle Schro?dinger equation is solved in a numerical procedure using the variational principle, Cartesian coordinates, parameterized explicitly correlated Gaussian functions with polynomial prefactors, and the global vector representation. As a result, non-relativistic energy levels and wave functions of few-particle systems can be obtained for various angular momentum, parity, and spin quantum numbers. A stochastic variational optimization of the basis function parameters facilitates the calculation of accurate energies and wave functions for the ground and some excited rotational-(vibrational-)electronic states of H(2) (+) and H(2), three bound states of the positronium molecule, Ps(2), and the ground and two excited states of the (7)Li atom.  相似文献   

8.
Accurate quantum-mechanical nonrelativistic variational calculations are performed for the nine lowest members of the (2)P(o) Rydberg series (1s(2)np(1), n = 2, ..., 10) of the lithium atom. The effect of the finite nuclear mass is included in the calculations allowing for determining the isotopic shifts of the energy levels. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. The exponential parameters of the Gaussians are variationally optimized with the aid of the analytical energy gradient determined with respect to those parameters. The calculated state energies are compared with the available experimental data.  相似文献   

9.
The Darwin and mass-velocity relativistic corrections have been calculated for all pure vibrational states of the H2 using the perturbation theory and very accurate variational wave functions obtained without assuming the Born-Oppenheimer (BO) approximation. Expansions in terms of explicitly correlated Gaussians with premultipliers in the form of even powers of the internuclear distance were used for the wave functions. With the inclusion of the two relativistic corrections to the non-BO energies the transition energies for the highest states agree more with the experimental results.  相似文献   

10.
Explicitly correlated Gaussian (ECG) functions with carefully optimized non-linear parameters are used to calculate the electronic energies of He2+ and LiH at their equilibrium internuclear distances. The obtained variational upper bounds (−4.99464392 and −8.070538 hartree, respectively) are the lowest reported to date. By extrapolating results obtained with various expansion lengths, the estimations of the Born–Oppenheimer limits are made.  相似文献   

11.
Non-Born-Oppenheimer variational calculations employing explicitly correlated Gaussian basis functions have been performed for the ground states of the beryllium monohydride molecule (BeH) and its ion (BeH+), as well as for the beryllium atom (Be) and its ion (Be+). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. The calculated energies were used to determine the ionization potential of BeH and the dissociation energies of BeH and BeH+. Also, the generated wave functions were used to compute various expectation values, such as the average interparticle distances and the nucleus-nucleus correlation functions.  相似文献   

12.
The use of Hermite Gaussian auxiliary function densities from the variational fitting of the Coulomb potential for the calculation of exchange-correlation potentials is discussed. The basic working equations for the energy and gradient calculation are derived. The accuracy of this approximation for optimized structure parameters and bond energies are analyzed. It is shown that the quality of the approximation can be systematically improved by enlarging the auxiliary function set. Average errors of 0.5 kcal/mol are obtained with auxiliary function sets including f and g functions. The timings for a series of alkenes demonstrate a substantial performance improvement.  相似文献   

13.
Radial correlation limits of two-electron atoms with atomic numbers Z = 1–10 are calculated by using modified Kinoshita wave functions in which all the parameters are optimized. The optimal Kinoshita functions show a rapid energy convergence with the increasing number N of constituent terms, and the radial energies convergent to 10 significant figures are obtained. The results show that both the calculated and estimated values of the radial correlation limits in the literature are insufficiently accurate. In the case of He, for example, the present calculation gives ?2.879 028 764 hartrees with N = 40, while the best literature value is ?2.879 028 6 hartrees.  相似文献   

14.
In this article we report accurate nonrelativistic variational calculations of the ground and two excited states of C(+) ion. We employ extended and well optimized basis sets of all-electron explicitly correlated Gaussians to represent the wave functions of the states. The optimization of the basis functions is performed with a procedure employing the analytic gradient of the energy with respect to the nonlinear parameters of the Gaussians. The calculations explicitly include the effects due to the finite nuclear mass. The calculated transition energies between the three states are compared to the experimentally derived values. Finally, we present expectation values of some small positive and negative powers of the interparticle distances and contact densities.  相似文献   

15.
The PPP model is used to consider polyene chains in the ground state with allowance for the interaction of the electrons with core deformations. The stationary wave functions describing the electron correlations are derived as antisymmetrized products of two-electron functions optimized with respect to all variational parameters. The bond-length alternation can be related to the characteristics of the electron-electron potential; one can allow approximately for the effects of interaction between electrons at adjacent centers on the alternation by renormalizing the parameters in the Hubbard model.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 22, No. 3, pp. 263–270, May–June, 1986.In am indebted to I. I. Ukrainskii for a discussion of this.  相似文献   

16.
We pursue the development and application of the recently introduced linear optimization method for determining the optimal linear and nonlinear parameters of Jastrow-Slater wave functions in a variational Monte Carlo framework. In this approach, the optimal parameters are found iteratively by diagonalizing the Hamiltonian matrix in the space spanned by the wave function and its first-order derivatives, making use of a strong zero-variance principle. We extend the method to optimize the exponents of the basis functions, simultaneously with all the other parameters, namely, the Jastrow, configuration state function, and orbital parameters. We show that the linear optimization method can be thought of as a so-called augmented Hessian approach, which helps explain the robustness of the method and permits us to extend it to minimize a linear combination of the energy and the energy variance. We apply the linear optimization method to obtain the complete ground-state potential energy curve of the C(2) molecule up to the dissociation limit and discuss size consistency and broken spin-symmetry issues in quantum Monte Carlo calculations. We perform calculations for the first-row atoms and homonuclear diatomic molecules with fully optimized Jastrow-Slater wave functions, and we demonstrate that molecular well depths can be obtained with near chemical accuracy quite systematically at the diffusion Monte Carlo level for these systems.  相似文献   

17.
Orbital energy parameters, previously obtained from atomic valence state energies, are used in calculating approximate wave functions for their orbitals. The radial factors of these wave functions are expressed as linear combinations of three Gaussian type orbitals with selected exponents, the coefficients being determined by normalisation and reproduction of the kinetic energy and interelectron repulsion parameters. Wave functions of universal form are obtained for the non-transition elements up to xenon. Each calculated s orbital wave function (except 1s) has a radial node, as is appropriate if there is a p orbital in the same shell with none.  相似文献   

18.
Very accurate variational non-relativistic calculations are performed for four higher Rydberg (2)D states (1s(2)nd(1), n = 8,..., 11) of the lithium atom ((7)Li). The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions and finite nuclear mass is used. The exponential parameters of the Gaussians are optimized using the variational method with the aid of the analytical energy gradient determined with respect to those parameters. The results of the calculations allow for refining the experimental energy levels determined with respect to the (2)S 1s(2)2s(1) ground state.  相似文献   

19.
An ab initio method for the calculation of atomic and molecular electronic wave functions is presented. The “Optimized-Basis-Set Multiconfiguration Spin-Coupled” (OBS –MCSC ) method may be viewed either as a multiconfiguration generalization of the spin-coupled approach or as a nonorthogonal variant of the MCSCF method. In addition, the OBS –MCSC method optimizes the basis-set exponential parameters simultaneously with all other variational parameters, through a second-derivative minimization procedure. Explicit analytic expressions for the required first and second derivatives of the energy with respect to all variational parameters are obtained. Test calculations prove the capability of the method to yield compact yet accurate electronic wave functions.© 1993 John Wiley & Sons, Inc.  相似文献   

20.
The recently proposed electron-hole potential (EHP) method for excited states is extended to the multi-configurational case. The variation equation is solved using the quadratic convergence method. The EHP methods are shown to be approximations to the complete singly excited configuration interaction (CSECI) in the variational sense. Extended Brillouin theorems are proved for the EHP methods. The excitation energies and wave functions obtained by one and two configurational EHP methods agree well with those of the CSECI method. The EHP methods have clear advantage in the computer time requirement over the CI method and are especially suited for a calculation of approximate excited states of large molecules. The EHP methods are applicable to excited states which belong to the same irreducible representation as the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号