首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phosphate functionalized cysteamine self-assembled monolayer based on gold electrode is designed for uranyl ion (UO22+) detection. The response of the modified electrode is studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The EIS data are approximated using constant phase element (CPE) model from which kinetic and analytical parameters are evaluated. Uranyl ion is recognized based on blocking effect against charge transfer between p-benzoquinone as a probe and the modified electrode. This effect is detected from linear variation of charge transfer resistance (Rct) as a function of UO22+ concentration. From the analysis of the EIS data and approximated parameters, a method is developed for UO22+ determination based on impedimetric measurements.  相似文献   

2.
《Analytical letters》2012,45(4):263-272
Abstract

The utility of hydroxy naphthol blue (HNB) as a spectrophotometric and fluorometric reagent for the uranyl ion has been investigated. In phthalate buffer (at a pH of 4.0), UO2 2+ forms a brown complex of low absorptivity with the red form of HNB. By following the decrease in HNB absorbance at 530 nm (which has ε = 4.1 × 103) uranyl ion can be determined to levels as low as 1.1 × 10?6 M (0.30 μg/ml). HNB also emits at 460 nm when excited at 365 nm at these pH values, while the UO2 2+ complex exhibits greatly reduced emission. Examination of the quenching of HNB emission by UO2 2+ allows the determination of uranyl ion to levels as low as 3.2 × 10?6 M (0.86 μg/ml). A 1:1 type complex was formed between UO2 2+ and HNB, and a formation constant of 9.77 × 103 (log K1 = 3.99) was measured for the complex.  相似文献   

3.
The complexation of the uranyl ion with humic acid is investigated. The humic acid ligand concentration is described as the concentration of reactive humic acid molecules based on the number of humic acid molecules, taking protonation of functional groups into account. Excess amounts of U(VI) are used and the concentration of the humic acid complex is determined by the solubility enhancement over the solid phase. pH is varied between 7.5 to 7.9 in 0.1M NaClO4 under normal atmosphere and room temperature. The solubility of U(VI) in absence of humic acid is determined over amorphous solid phase between pH 4.45 and 8.62. With humic acid, only a limited range of data can be used for the determination of the complexation constant because of flocculation or sorption of the humic acid upon progressive complexation. Analysis of the complex formation dependency with pH shows that the dominant uranyl species in the concerned pH range are UO2(OH)+ and (UO2)3(OH)5 +. The complexation constant is evaluated for the humate interaction with the to UO2(OH)+ ion. The stability constant is found to be logβ = 6.94±0.3 l/mol. The humate complexation constant of the uranyl mono-hydroxo species thus is significantly higher than that of the nonhydrolyzed uranyl ion (6.2 l/mol). Published data on the Cm3+, CmOH2+ and Cm(OH)2 + humate complexation are reevaluated by the present approach. The higher stability of the hydrolysis complex is also found for Cm(III) humate complexation.  相似文献   

4.
To improve our knowledge on protein targets of uranyl ion (UO22+), we set up a proteomic strategy based on immobilized metal-affinity chromatography (IMAC). The successful enrichment of UO22+-interacting proteins from human kidney-2 (HK-2) soluble cell extracts was obtained using an ion-exchange chromatography followed by a dedicated IMAC process previously described and designed for the uranyl ion. By mass spectrometry analysis we identified 64 proteins displaying varied functions. The use of a computational screening algorithm along with the particular ligand-based properties of the UO22+ ion allowed the analysis and categorization of the protein collection. This profitable approach demonstrated that most of these proteins fulfill criteria which could rationalize their binding to the UO22+-loaded phase. The obtained results enable us to focus on some targets for more in-depth studies and open new insights on its toxicity mechanisms at molecular level.  相似文献   

5.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

6.
The formation of hydrolysed uranyl(VI) species in UO2X zeolites prepared by various methods has been investigated by Raman spectroscopy. Ion-exchange in aqueous (pH>3) and non-aqueous (anhydrous methanol and uranyl nitrate melts) media resulted in the formation of hydroxy-bridged complexes such as [(UO2)3(OH)4]2+, [(UO2)3(OH)5]+, and [(UO2)4(OH)7]+. Ion-exchange in more acidic media (initial pH < 3) was accompanied by the formation of a disordered phase incorporating UO3, following extensive collapse of the zeolite framework structure. Cation speciation in the UO2X system is compared to that in UO2Y zeolites.  相似文献   

7.
The feasibility of using gold electrodes modified with short-chain ssDNA oligonucleotides for determination of uranyl cation is examined. Interaction between UO22+ and proposed recognition layer was studied by means of voltammetric and quartz crystal microbalance measurements. It was postulated that ssDNA recognition layer functions via strong binding of UO22+ to phosphate DNA backbone. The methylene blue was used as a redox marker for analytical signal generation. Biosensor response was based on the difference in electrochemical signal before and after subjecting it to sample containing uranyl ion. The lower detection limit of 30 nmol L−1 for UO22+ was observed for a sample incubation time of 60 min. Proposed ssDNA-modified electrodes demonstrated good selectivity towards UO22+ against common metal cations, with only Pb2+ and Ca2+ showing considerable interfering effect.  相似文献   

8.
Some phosphoproteins such as osteopontin (OPN) have been identified as high-affinity uranyl targets. However, the binding sites required for interaction with uranyl and therefore involved in its toxicity have not been identified in the whole protein. The biomimetic approach proposed here aimed to decipher the nature of these sites and should help to understand the role of the multiple phosphorylations in UO22+ binding. Two hyperphosphorylated cyclic peptides, pS168 and pS1368 containing up to four phosphoserine (pSer) residues over the ten amino acids present in the sequences, were synthesized with all reactions performed in the solid phase, including post-phosphorylation. These β-sheet-structured peptides present four coordinating residues from four amino acid side chains pointing to the metal ion, either three pSer and one glutamate in pS168 or four pSer in pS1368 . Significantly, increasing the number of pSer residues up to four in the cyclodecapeptide scaffolds produced molecules with an affinity constant for UO22+ that is as large as that reported for osteopontin at physiological pH. The phosphate-rich pS1368 can thus be considered a relevant model of UO22+ coordination in this intrinsically disordered protein, which wraps around the metal ion to gather four phosphate groups in the UO22+ coordination sphere. These model hyperphosphorylated peptides are highly selective for UO22+ with respect to endogenous Ca2+, which makes them good starting structures for selective UO22+ complexation.  相似文献   

9.
Chemiluminescence (CL) accompanying the reaction of U4+ with O2 in 0.0004–0.1M HClO4 was studied. It was found that the electron-excited uranyl ion (UO2 2+)* is the CL emitter. The fact that the reaction rate and the CL yield increase as the solution acidity decreases was explained by different reactivities of the U aq 4+ aquation and the products of its stepwise hydrolysis, UOH3+ and U(OH)2 2+, toward O2. Based on the results of analysis of the chain-radical mechanism of the reaction between U4+ and O2, it was concluded that transfer of an electron from the UO2 + ion to the oxidizing agent (a ·OH radical) is the most plausible elementary step of the reaction of (UO2 2+)* formation. It was found that the reaction rate, as well as the CL yield, increase substantially in the presence of uranyl ion. Catalytic action of UO2 2+ was explained by the formation of a UO2 2+·UO2 + complex, which reduces the rate of the UO2 + disproportionation reaction (UO2 + is an intermediate of the reaction and is involved in chain propagation), and by regeneration of the active center, UO2 +, in the reaction of UO2 2+ with U4+. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1522–1528, September, 2000.  相似文献   

10.
The preparation, spectroscopic characterization and thermal stability of neutral complexes of uranyl ion, UO2 2+, with phosphonate ligands, such as diphenylphosphonic acid (DPhP), diphenyl phosphate (DPhPO) and phenylphosphonic acid (PhP) are described. The complexes were prepared by a reaction of hydrated uranyl nitrate with appropriate ligands in methanolic solution. The ligands studied and their uranyl complexes were characterized using thermogravimetric and elemental analyses, ESI-MS, IR and UV–Vis absorption and luminescence spectroscopy as well as luminescence lifetime measurements. Compositions of the products obtained dependent on the ligands used: DPhP and DPhPO form UO2L2 type of complexes, whereas PhP forms UO2L complex. Based on TG and DTG curves a thermal stability of the complexes was determined. The complexes UO2PhP·2H2O and UO2(DPhPO)2 undergo one-step decomposition, while UO2PhP · 2H2O is decomposed in a two-step process. The thermal stability of anhydrous uranyl complexes increases in the series: DPhPO < PhP < DPhP. Obtained IR spectra indicate bonding of P–OH groups with uranyl ion. The main fluorescence emission bands and the lifetimes of these complexes were determined. The complex of DPhP shows a green uranyl luminescence, while the uranyl emission of the UO2PhP and UO2(DPhPO)2 complexes is considerably weaker.  相似文献   

11.
The polyethylene (PE) membrane was prepared by the radiation-induced grafting of acrylonitrile (AN) onto PE hollow fiber and by the subsequent amidoximation of cyano groups in poly-AN graft chains. The adsorption characteristics of the chelating hollow fiber membrane was examined as the solution of UO2 2+ permeated across the chelating hollow fiber membrane. The inner and outer diameter increased with an increasing grafting yield, whereas, the pure water flux and pore diameter decreased with an increasing grafting yield. The adsorption of UO2 2+ by the chelating hollow fiber membranes increased with an increasing amidoxime group. The adsorbed amount of UO2 2+ in the uranyl acetate solution was higher than that in the uranyl nitrate solution. The adsorbed amount of UO2 2+ is higher than that of Cu2+ when the solution of UO2 2+ and Cu2+ permeated across the chelating membrane, respectively. The adsorption characteristics of UO2 2+ by the amidoxime group-chelating fiber membrane in the presence of Na1+ and Ca2+ showed a high selectivity for UO2 2+ even though there was a high concen-tration of Na1+ and Ca2+ in the inlet solution.  相似文献   

12.
A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxyl radical was formed in the uranyl ion (UO2 2+), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and hydrogen peroxide (H2O2) mixture solution. The pseudo first order rate constants of DMPO-OH formation were estimated to be 0.033 s−1 for UO2 2+-H2O2-DMPO solution and 0.153 s−1 for UO2+-H2O2-DMPO solution. The obtained results indicated that the hydroxyl radical formation in the UO2 2+-H2O2 solution could be described as a stepwise reaction process including the reduction of UO2 2+ to UO2 2+ by H2O2 and the Fenton-type reaction of UO2 + with H2O2. Biosubstances, such as proteins, amino acids and saccharides, decreased the DMPO-OH formation, which was caused by the direct hydroxyl radical scavenging and the suppression of hydroxyl radical formation by coupling with uranyl ion.  相似文献   

13.
Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae was studied in a batch system. The influence of contact time, initial pH, temperature and initial concentration was investigated. The optimal conditions were found to be 3.5?h of contact time and pH?=?4.5. Temperature had no significant effect on adsorption. The uptake of uranyl ions was relatively fast and 85?% of the sorption was completed within 10?min. The experimental data were well fitted with Langmuir isotherm model and pseudo-second order kinetic model. According to this kinetic model, the sorption capacity and the rate constant were 0.455?mmol UO2 2+/g dry biomass and 1.89?g?mmol?1?min?1, respectively. The Langmuir isotherm indicated high affinity and capacity of the adsorbent for uranyl biosorption with the maximum loading of 0.477?mmol UO2 2+/g dry weight.  相似文献   

14.
The chemistry of the uranyl ion ([UO2]2+) has evolved remarkably over the past few years, with unexpected reactivity observed that challenge our understanding of this ion, and of actinides in general. This review highlights some recent advances in the field, focussing on the organometallic chemistry of the uranyl moiety, which is not well developed in comparison to lower oxidation states of uranium. The use of uranyl as a catalyst is highlighted and the newly developed supramolecular chemistry is described. The uranyl oxygen atoms have been considered as inert, but recent work has shown that is not necessarily the case and is discussed herein. Finally, reduction to the [UO2]+ ion will be discussed.  相似文献   

15.
《中国化学快报》2022,33(7):3451-3455
The extraction complexes of uranyl(VI) in HNO3 to a hydroxyl-functionalized ionic liquid (IL) phase, HOEtmimNTf2 bearing CMPO, were investigated. Three possibly successive extraction complexes, UO2L2+ (L = CMPO), UO2L22+ and UO2L32+, were detected based on variable U/L ratios. Uranyl(VI) prefers to be extracted as complex UO2L32+, combining with the ions from HOEtmimNTf2 to construct a solid material through self-assembly. The thermodynamics of complexes, UO2Lj2+ (j = 1-3), were studied by spectrophotometry and microcalorimetry. All the formation reactions are principally driven by entropy, although a small part of the driving force of complexes UO2L22+ and UO2L32+ comes from enthalpy. Based on the thermodynamic properties for complex UO2L32+, we provide a possible coordination mode in HOEtmimNTf2: the first CMPO molecule coordinates with UO22+ in a bidentate fashion while the others do in a monodentate fashion. The results offer a thermodynamic insight into the formation behaviors of the uranyl(VI)/CMPO complexes involving the special IL HOEtmimNTf2, which is of significance to advance the novel IL extraction strategy.  相似文献   

16.
《中国化学快报》2023,34(4):107725
Extensive application of nuclear energy has caused widespread environmental uranium contamination. New detection approaches without complicated sample pretreatment and precision instruments are in demand for on-site and in-time determination of uranyl ions in environmental monitoring, especially in an emergency situation. In this work, a simple and effective fluorescent sensor (Z)-N'-hydroxy-4-(1,2,2-triphenylvinyl)benzimidamide (TPE-A) with aggregation-induced emission (AIE) character was established and studied. It could realize to detect UO22+ via quenching the fluorescence of its aggregation-induced emission, with good selectivity and sensitivity. Such strategy shows a wide linear range from 5.0 × 10?8 mol/L to 4.5 × 10?7 mol/L (R2 = 0.9988) with exceptional sensitivity reaching 4.7 × 10?9 mol/L, which is far below the limit for uranium in drinking water (30 μg/L, ca. 1.1 × 10?7 mol/L) stipulated by the WHO. A response time less than four minutes make it rapid for uranyl ion measurement. It was applied for detection of uranyl ion in spiked river water samples with recoveries in the range of 98.7%-104.0%, comparable to those obtained by ICP-MS. With the advantages of portable apparatus, rapid detection process and high sensitivity, TPE-A can serve as a promising fluorescent sensor for the detection of UO22+ in environmental water samples.  相似文献   

17.
Complexation of the uranyl ion (UO22+) and of the peroxouranyl species (UO4) by some polyaminocarboxylate ligands has been investigated in solution (3M NaClO4) at 25°C. The logarithms of the cumulative formation constants of the UO22+ chelates formed are: UO2edta2? (15.65), UO2Hedta? (18.59), (UO2)2edta (20.24); UO2edda (16.02); UO2Hnta (12.19); UO2ida (9.63), UO2H2(ida)2 (23.80). The equilibrium UO22+ + H2O2 ? UO4 + 2H+ has a stability log K = ?3.99. The peroxocomplexes formed are UO4Hedda? (14.81, expressed from UO22+ and H2O2) and UO4Hnta2? (8.50). Solution structures of the chelates are proposed.  相似文献   

18.
Summary Three silylcellulosic derivatives with different substitution degree were examined as sorbents for uranyl ions. The adsorption rate and capacity of cellulose and modified cellulose were investigated in aqueous media, at various pH and temperature values. The polymer - metal complexes of UO22+ were characterized by infrared and electronic spectra, and thermogravimetry. The thermal behavior of cellulose (C), trimethylsilyl - cellulose (tmsc, SD= 2.85) and triphenylsilyl - cellulose (TPSC1, SD=2.89 and TPSC2, SD =2.70) and their complexes with uranyl ions in atmospheric air has been studied between room temperature and 600 °C. The Coats-Redfern method was applied to estimate the kinetic parameters. The results revealed that the complexation of C and TMSC with UO22+ increases the thermal stability.</p> </p>  相似文献   

19.
Clay materials, montmorillonite from Maghniya deposits (Algeria), were used as an acidic catalyst in toluene conversion. Toluene disproportionation reaction in gaseous phase was used. These clays were modified by ion exchange with uranyl ions UO22+. The surface acidity of catalysts was determined by the stepwise desorption technique (STD) of probe molecules using butylamine and ammonia. Thus, total acidity and distribution of the acidity strength were determined. The results show that materials presented an appreciable total acidity and catalytic activity in studied reaction. The acidity strength of catalysts due to UO22+ ions was kept at a temperature of 550 °C. A relationship was found between the catalytic activity and acidity strength generated by the introduction of uranyl ions in the clay structure.  相似文献   

20.
Hassan SS  Attawiya AM 《Talanta》2006,70(4):883-889
A novel potentiometric uranyl membrane sensor with a divalent anionic response is developed, characterized and used for determination of uranyl ion. The sensor incorporates triethylenetetramine (TETA) as an ionophore in poly(vinyl chloride) matrix membrane (PVC) plasticized with o-nitrophenyloctyl ether (o-NPOE). In strong sulphate test solutions, UO22+ ion forms a highly stable [UO2(SO4)2]2− anion, extractable in TETA as {(2TETAH)2+ [UO2(SO4)2]2−} complex. Formation of the complex is confirmed and characterized by elemental analysis, mass spectrometry and infrared spectrometry. Sensor based on this system displays at pH 2.5-3.8 a linear response over the concentration range of 1.0 × 10−1-3.5 × 10−5 mol l−1 uranium with a near-Nernstian calibration slope of −26.5 ± 0.3 mV decade−1. The lower limit of detection is ∼5 μg ml−1, the lifetime is 12 weeks and negligible interferences are caused by most common cations. Validation of the assay method reveals excellent performance characteristics in terms of sensitivity, selectivity, fast response and potential stability. The sensor is used for the determination of 0.01-7.09 wt% uranium in naturally occurring and certified ore samples. The results show an average recovery of 97.6% and compare fairly well with data obtained using X-ray fluorescence technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号