首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this work the adsorption process of Fluorescein (dye with aril-methane group) as a function of pH on three different adsorbents: goethite, Co-goethite, and magnetite has been studied experimentally and theoretically. FTIR and Raman spectroscopy have been performed in an attempt to confirm the structure of surface complexes formed by sorption of the Fluorescein to different iron oxides. Typical anionic adsorption behaviour was observed for this dye onto goethite and Co-goethite whereas the adsorption level was practically constant in the range of pH studied when the adsorbent was magnetite. The diffuse layer model was employed to fit the experimental results. The surface complexes proposed from the adsorption data were in agreement with the patterns obtained from FTIR and Raman spectroscopy. The surface structure of the oxides affects the adsorption process and the final adsorbed amount at the equilibrium. Our model of diffuse double layer with the addendum of the effect of hydrophobic forces fits well the adsorption data of Fluorescein on iron oxides at different pH in the studied range. At lower pH electrostatic forces by ligand-exchange are predominant. In the range of pH 9-11 hydrophobic forces are managing the Fluorescein adsorption on the iron oxides, with the formation of outer-sphere complexes through van der Waals/hydrophobic forces. It is interesting that in the three iron oxides studied, the adsorbed amount in this range is similar.  相似文献   

2.
3.
Adsorption of Pseudomonas putida on kaolinite, montmorillonite and goethite was studied in the presence of organic ligands and phosphate. Citrate, tartrate, oxalate and phosphate showed inhibitive effect on P. putida adsorption by three minerals in a broad range of anion concentrations. The highest efficiencies of the four ligands in blocking the adsorption of P. putida on goethite, kaolinite and montmorillonite were 58–90%, 35–76% and 20–48%, respectively. The ability of organic ligands in prohibiting the binding of P. putida cells to the minerals followed the sequence of citrate > tartrate > oxalate > acetate. The significant suppressive effects on P. putida adsorption were ascribed to the increased negative charges by adsorbed ligands and the competition of ligands with bacterial surface groups for binding sites. The inhibitive effects on P. putida adsorption by organic ligands were also dependent on the steric hindrance of the molecules. Acetate presented promotive effect on P. putida adsorption by kaolinite and goethite at low anion concentrations. The results obtained in this study suggested that the adsorption of bacteria in soils especially in the rhizosphere can significantly be impacted by various organic and inorganic anions.  相似文献   

4.
Inorganic phosphate may influence the adsorption of glyphosate to soilsurface sites. It has been postulated that glyphosate sorption is dominatedby the phosphoric acid moiety, therefore, inorganic phosphate could competewith glyphosate for surface sorption sites. We examine sorption of glyphosatein low organic carbon systems where clay minerals dominate the available adsorptionsites using 32P-labeled phosphate and 14C-labeled glyphosateto track sorption. We found glyphosate sorption strongly dependent on phosphateadditions. Isotherms were generally of the L type, which is consistent witha limited number of surface sites. Most sorption on whole soils could be accountedfor by sorption observed on model clays of the same mineral type as foundin the soils.  相似文献   

5.
Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.  相似文献   

6.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

7.
Phosphate adsorption on synthetic goethite and akaganeite   总被引:8,自引:0,他引:8  
Low crystalline iron hydroxides such as goethite (alpha-FeOOH) and akaganeite (beta-FeOOH) were synthesized, and the selective adsorption of phosphate ions from phosphate-enriched seawater was examined. The results of the distribution coefficients (K(d)) of oxoanions in mixed anion solutions at pH 8 follow the selectivity order Cl-, NO3-, SO4(2-) < CO3(2-), HPO4(2-) for goethite, and Cl-, CO3(2-) < NO3- < SO4(2) < HPO4(2-) for akaganeite. In seawater, both adsorbents show high selectivity for phosphate ions despite the presence of large amounts of major cations and anions in seawater. The adsorption isotherms fitted better with the Freundlich equation and the maximum uptake of phosphate from phosphate-enriched seawater was 10 mg P/g at an equilibrium phosphate concentration of 0.3 mg P/L on both adsorbents. The phosphate adsorption/desorption cycles show that akaganeite is an excellent adsorbent even after 10 cycles and its chemical stability is good.  相似文献   

8.
To evaluate the contribution of organic matter, oxides, and clay fraction to Zn adsorption in six soils from Galicia (Spain), after soil characterization, adsorption isotherms were obtained by adding nine solutions containing between 20 and 500 mg L(-1) concentrations of Zn(NO(3))(2). Distribution coefficients were obtained from the data of adsorption isotherms. Zn adsorption isotherms corresponding to untreated soil and to the organic matter removed samples and organic matter and oxides removed samples were compared with curves pattern and adjusted to Langmuir and Freundlich empirical models. Untreated soils described L-curves whereas when soils were deprived of any component, the curves described were S-type. Distribution coefficients allowed knowing the Zn adsorption capacity of the untreated soil, and of the organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Zn adsorption as long as soil pH is near neutrality. At acid pH, the oxides are the main component that affects Zn adsorption, although to a much smaller extent than the organic matter near neutral conditions. So soil pH is the main soil factor that determines Zn adsorption, before any other soil property.  相似文献   

9.
Radionuclide adsorption on clay rocks has in recent years been studied mainly in connection with their use as sealing barriers in nuclear waste and spent nuclear fuel repositories. In Slovakia we find deposits of bentonites which should be used for the above mentioned purpose. The usability of adsorbents in practical applications depends on the speed of the adsorption process of the adsorbate on the adsorbent surface and distribution ratio. The work objective was the study of the kinetics of Sr adsorption on clay adsorbents with different geological origin. The geological origin of bentonite significantly influences its mineralogical and chemical composition and therein its adsorption properties. The adsorption process of strontium was fast. Adsorption equilibrium was reached for all three samples studied within 1 min from the beginning of the contact between solid and liquid phases. After the adsorption equilibrium was reached there were no more changes in the values of distribution coefficients and the adsorption percentage, and comparable values were reached in the contact-phase time span studied within 10 days. The values of adsorbed strontium were decreasing in the following order: J250 > L250 > DV45. The pseudo second-order kinetic models was used to describe model the kinetic data and provided excellent kinetic data fitting (R 2 > 0.999).  相似文献   

10.
The adsorption isotherms of H2S in selected adsorbents were determined at 298 K, at relative pressures up to about 0.005, aiming the use of these materials in the removal of that pollutant from the museums atmosphere. The Dubinin-Astakhov equation adjusts very well the experimental results, although one cannot interpret the pre-exponential factor w0 as the limiting adsorbed amount. The parameter E, related with the adsorption energy, and the parameter n, that can be associated with the surface heterogeneity of the adsorbents, are correlated and the first is also correlated with the adsorbed amounts. It was not found any expectable relationship between the adsorbed amounts and textural parameters of the adsorbents such as the specific surface area or the microporous volume. This points out that the adsorption of H2S is highly specific. In general, 13X and Y sodium zeolites seem to be the most effective adsorbents, but at lowest tested pressures, near the concentrations found at museums, a pillared clay prepared from a Wyoming montmorillonite seems to be more efficient.  相似文献   

11.
Arsenic (As) is a toxic trace element that occurs naturally in groundwater and soils. Understanding the reactions of arsenite (As(III)) and arsenate (As(V)) with soil and mineral surfaces is critical for predicting the fate and transport of As in the environment and developing better ways to remediate As-contaminated areas. This investigation uses X-ray absorption near edge spectroscopy (XANES) to evaluate the solid phase oxidation state and mineral surface binding sites in three agricultural soil samples from California, USA by fitting linear combinations of XANES spectra derived from several synthetic and well characterized As(III)- and As(V)-treated model compounds (Fe and Al metal hydroxides and aluminosilicate illite clay mineral). The results suggest that As(III) is either partially or completely oxidized to As(V) when reacted with soil in an aqueous, batch reaction. The As(III)-treated Aiken soil was composed of 60% As(III) attached to surfaces similar to lepidocrocite (γ-FeOOH)) and 40% As(V) attached to aluminosilicate (illite). The Fallbrook soil completely oxidized As(III) and the product was As(V) adsorbed on Al hydroxide (gibbsite, γ-Al(OH)3) (62%), illite (16%), and lepidocrocite (γ-FeOOH) (22%). The reaction of As(III) with Wyo soil resulted in 42% As(III) adsorbed on surface similar to goethite and 58% As(V) adsorbed on lepidocrocite. Arsenic(V) adsorption on soil resulted in stable As(V) surface complexes that were well described by XANES spectra from As(V) adsorption complexes on gibbsite, illite, and lepidocrocite.  相似文献   

12.
The influence of various types of background electrolytes (NaCl, NaNO(3), and NaClO(4)) on the proton adsorption and on the adsorption of sulfate and phosphate on goethite have been studied. Below the PZC the proton adsorption on goethite decreases in the order Cl>NO(3)>ClO(4). The decreasing proton adsorption affects the adsorption of oxyanions on goethite. Anion adsorption of strongly binding polyvalent anions is lower in the studied electrolytes in the order Cl相似文献   

13.
Glyphosate is the active component of one of the top‐selling herbicides, which is also a potent EPSP synthase inhibitor. The herbicide is absorbed by living tissue and translocated via the phloem, to plant roots and rhizomes. When applied directly into the soil it has low activity, due to the high adsorption by soil constituents. Understanding the specific interactions between metals in the soil and glyphosate is the main step in understanding the low activity of the herbicide when applied directly into the ground and not pulverized. We can observe there is a stability order for both tetrahedral and octahedral complexes between glyphosate and metals: Zn>Cu>Co>Fe>Cr>Al>Ca>Mg. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.  相似文献   

15.
Typically, a significant fraction of phosphorus in soils is composed of organic phosphates, and this fraction thus plays an important role in the global phosphorus cycle. Here we have studied adsorption of monomethyl phosphate (MMP) to goethite (α-FeOOH) as a model system in order to better understand the mechanisms behind adsorption of organic phosphates to soil minerals, and how adsorption affects the stability of these molecules. The adsorption reactions and stability of MMP on goethite were studied at room temperature as a function of pH, time and total concentration of MMP by means of quantitative batch experiments, potentiometry and infrared spectroscopy. MMP was found to be stable at the water-goethite interface within the pH region 3-9 and over extended periods of time, as well as in solution. The infrared spectra indicated that MMP formed three predominating pH-dependent surface complexes on goethite, and that these interacted monodentately with surface Fe. The complexes differed in hydrogen bonding interactions via the auxiliary oxygens of the phosphate group. The presented surface complexation model was based on the collective spectroscopic and macroscopic results, using the Basic Stern approach to describe the interfacial region. The model consisted of three monodentate inner sphere surface complexes where the MMP complexes were stabilized by hydrogen bonding to a neighboring surface site. The three complexes, which had equal proton content and thus could be defined as surface isomers, were distinguished by the distribution of charge over the 0-plane and β-plane. In the high pH-range, MMP acted as a hydrogen bond acceptor whereas it was a hydrogen bond donor at low pH.  相似文献   

16.
Prior infrared spectroscopic studies of extracellular polymeric substances (EPS) and live bacterial cells have indicated that organic phosphate groups mediate cell adhesion to iron oxides via inner-sphere P–OFe surface complexation. Since cell membrane phospholipids are a potential source of organic phosphate groups, we investigated the adhesion of phospholipidic vesicles to the surfaces of the iron (oxyhydr)oxides goethite (α-FeOOH) and hematite (α-Fe2O3) using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. l-α-Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) were used because they are vesicle forming phospholipids representative of prokaryotic and eukaryotic cell surface membranes. Phospholipid vesicles, formed in aqueous suspension, were characterized by transmission electron microscopy (TEM), multi-angle laser light scattering (MALS) and quasi-elastic light scattering (QELS). Their adhesion to goethite and hematite surfaces was studied with ATR-FTIR at pH 5. Results indicate that PC and PE adsorption is affected by electrostatic interaction and H-bonding (PE). Conversely, adsorption of PA involves phosphate inner-sphere complexes, for both goethite and hematite, via P–OFe bond formation. Biomolecule adsorption at the interface was observed to occur on the scale of minutes to hours. Exponential and linear increases in peak intensity were observed for goethite and hematite, respectively. Our ATR-FTIR results on the PA terminal phosphate are in good agreement with those on EPS reacted with goethite and on bacterial cell adhesion to hematite. These findings suggest that the plasma membrane, and the PA terminal phosphate in particular, may play a role in mediating the interaction between bacteria and iron oxide surfaces during initial stages of biofilm formation.  相似文献   

17.
Adsorption of DNA on montmorillonite, kaolinite, goethite and soil clays from an Alfisol in the presence of citrate, tartrate and phosphate was studied. A marked decrease in DNA adsorption was observed on montmorillonite and kaolinite with increasing anion concentrations from 0 to 5 mM. However, the amount of DNA adsorbed by montmorillonite and kaolinite was enhanced when ligand concentration was higher than 5 mM. In the system of soil colloids and goethite, with the increase of anion concentrations, a steady decrease was found and the ability of ligands in depressing DNA adsorption followed the sequence: phosphate > citrate > tartrate. Compared to H2O2-treated clays (inorganic clays), a sharp decrease in DNA adsorption was observed on goethite and organo-mineral complexes (organic clays) with increasing ligand concentrations. The results suggest that the influence of anions on DNA adsorption varies with the type and concentration of anion as well as the surface properties of soil components. Introduction of DNA into the system before the addition of ligands had the greatest amount of DNA adsorption on soil colloids and goethite. Organic and inorganic ligands promoted DNA adsorption on montmorillonite and kaolinite when ligands were introduced into the system before the addition of DNA. The results obtained in this study have important implications for the understanding of the persistence and fate of DNA in soil environments especially rhizosphere soil where various organic and inorganic ligands are active.  相似文献   

18.
Traditional black pottery produced in Nádudvar, E-Hungary, was studied by 57Fe Mössbauer spectroscopy, X-ray diffractometry and microscopy. Quartz, feldspar, clay minerals (kaolinite, smeetite, illite) and calcite were identified in the basic clay material by X-ray diffractometry (XRD). Mössbauer spectroscopy (MS) of the original clay revealed that about 35% of iron compounds were present in goethite while the rest in clay minerals (illite and smectite). After firing the clay in air using an electric furnace (red pottery is prepared in the same way), the Mössbauer spectra showed hematite as the only iron oxide or hydroxide phase, being in good agreement with X-ray diffractometry. In the black product itself, fired in the traditional open-flame furnace, the Mössbauer spectra reflected the presence of iron in magnetite and in sheet silicates with approximately the same relative ratio of oxides and silicates as in the starting material. This can be interpreted as a result of the transformation of goethite to hematite in the first step of firing (in air), and as a reduction of hematite to magnetite in the second step of firing (closed from air). A significant difference was found in the distribution of iron at the Fe2+ and Fe3+ cation sites in the black surface (more Fe2+) and at the dark gray bulk of the fired pottery (less Fe2+), showing that the reduction of Fe3+ occurs in the silicates instead of further reduction of the magnetite (e.g., to wüstite).  相似文献   

19.
The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.  相似文献   

20.
The sorption of Cu on five vineyard soils was examined via macroscopic and spectroscopic investigations. The composition of the soils was previously determined using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). X-ray absorption spectroscopy (XAS) was employed to determine the metal environment with regard to the identity and interaction of the nearest atomic neighbors, the bond distances, and the coordination numbers. The five soils present similar sorption properties and there is no XAS evidence that the nature of the soil samples affects the local chemical environment of Cu(II). The kinetics of the Cu sorption reactions is rapid, with the equilibrium loading of Cu on the surface achieving approximately 200 mumol g(-1), i.e., 12.7 mg g(-1). The XAS data indicate that Cu is adsorbed in the form of inner-sphere complexes with first shell CuO parameters of four equatorial CuO bonds equal to 1.93 A and two axial CuO bonds at 2.43 A. This is in accordance with a Jahn-Teller distorted octahedron environment around copper. Our results provide evidence of the complexation of Cu(II) onto soil organic matter coated with an inorganic surface (quartz, clay, and goethite).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号