首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(16):3148-3157
Abstract

A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow‐cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III).

The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2–210 µmol l?1 H2O2 with a LD of 1.8 µmol l?1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10?5 mol l?1 and 6.8×10?5 mol l?1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 µg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved.  相似文献   

2.
A new sensitive chemiluminescence (CL) method combined with continuous flow injection analysis is described for the determination of Cr(VI). Strong CL signals were generated by Cr(VI)-catalysed oxidation of gallic acid in the presence of potassium permanganate and hydrogen peroxide. Effects of reagent concentrations, temperature, pH, flow rates, mixing coil length and mixing flow sequences on the chemiluminescence intensity were studied. Under the optimised experimental conditions, the relationship between the logarithm of concentration (log?C) of Cr(VI) and the logarithm of intensity (log?I) is linear over the range of 2?×?10?11 – 5?×?10?4?mol?L?1, with the detection limit (3σ) of 4?×?10?12?mol?L?1. Relative standard deviation of ten measurements of 1?×?10?9?mol?L?1 Cr(VI) is 1.7%. This flow injection analysis (FIA) system proved to be able to analyse up to 40 samples h?1. Effects of various interferences possibly present in the water samples were investigated. Most cations and anions, as well as organic compounds, did not interfere with the determination of Cr(VI) in water samples. The experimental results obtained for chromium in reference materials were also in good agreement with the certified values.  相似文献   

3.
儿茶酚胺是一类非常重要的神经递质,在人体的心血管系统、神经系统、内分泌腺、肾脏、平滑肌等组织系统的生理活动中起着广泛的调节作用。肾上腺素为儿茶酚胺的一种,建立灵敏、高效的肾上腺素检测技术具有重要的临床意义。本文将银(Ⅲ)配合物与鲁米诺组成新的流动注射化学发光体系,利用碱性介质中肾上腺素对三价银配合物-鲁米诺化学发光体系有明显的增强效应来测定肾上腺素的含量,并据此建立了高效测定肾上腺素的流动注射化学发光新方法。在优化的条件下,该方法测定肾上腺素的线型范围为1.0×10-9~1.0×10-7 mol L-1,检出限为8.0×10-10 mol L-1,对1.5×10-8 mol L-1肾上腺素11次平行测定,其相对标偏差为2.9%。利用建立的分析方法测定了药物肾上腺素,并对三价银-鲁米诺化学发光新体系测定肾上腺素的反应机理进行了讨论。  相似文献   

4.
范顺利  屈芳  林金明 《化学学报》2006,64(18):1876-1880
在碱性介质中, CO32-对H2O2氧化鲁米诺化学发光反应具有重要作用, 荧光素钠对该反应具有很强的增敏作用. 据此, 建立了化学发光法测定二氧化碳的新方法. 方法的线性范围为1.0×10-10~5.0×10-6 mol•L-1 CO32-, 检出限为 1.2×10-11 mol•L-1 CO32- (相当于5.3×10-10 g•L-1 CO2). 该方法用于室内外空气中二氧化碳含量的测定, 相对标准偏差1.8%~2.1% (n=11), 加标实验回收率97.6%~101.4%. 论文还探讨了反应的发光机理, 发光反应很可能是由溶液中的CO32-与H2O2作用而产生的活性自由基引发, 荧光素钠对发光的增敏作用为化学能量转移过程.  相似文献   

5.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

6.
A highly sensitive automated sequential‐injection chemiluminescence (SIA‐CL) method for determination of glucosamine sulphate (GLS) was developed. The goal of the present work is the evaluation of the enhancement effect of the investigated drug glucosamine sulphate on the chemiluminescence reaction between luminol and H2O2 in alkaline medium of 1.0 × 10?2 mol L?1 sodium hydroxide at pH 11. The experimental conditions affecting the CL reaction such as the sequence of the reagents, concentrations, flow rate and aspirated volumes of reactants were systematically investigated and optimized. Under optimum conditions 50 μL of 1.0 × 10?3 mol L?1 luminol, 30 μL of a GLS test solution and 50 μL of 1.0 × 10?2 mol L?1 H2O2 were used and the luminescing zone was pushed into the detector at a flow rate 100 μL s?1. The proposed method recorded high sensitivity, accuracy and simplicity that could be clarified as linear concentration range 1.0‐2000 ng mL?1 with rectilinear part (r = 0.9992, n = 9) and limit of detection 0.3 ng mL?1, along with relative standard deviation 1.3%. It was found that the developed method can be used directly to determine the investigated drug GLS in its pharmaceutical dosage forms and in spiked serum and urine by diluting the samples for a 1000 fold. The obtained results were statistically analyzed and compared with those obtained by the reported method.  相似文献   

7.
A flow-injection procedure is described for the determination of carbaryl based on its inhibition effect on luminol-cobalt(II) chemiluminescence reaction in alkaline medium in the presence of hydrogen peroxide. The calibration data over the range 5.0?×?10?7 to 20?×?10?6?M give a correlation coefficient (r 2) of 0.9972 with relative standard deviations (RSD; n?=?4) in the range of 1.0–2.1% with a limit of detection (3?×?blank noise) of 2.37?×?10?7?M for carbaryl. The sample throughput was 120?h?1. The effects of some carbamates, anions, and cations were studied on luminol CL system for carbaryl determination. The proposed method has been applied to determine carbaryl in natural waters.  相似文献   

8.
Hemoglobin (Hb) and silver–silver oxide (Ag–Ag2O) nanoparticles were co-immobilized on a bare silver electrode surface by cyclic voltammetry, and were characterized by UV–vis reflection spectroscopy, scanning electron microscopy, and electrochemical impedance spectroscopy. The immobilized Hb was shown to maintain its biological activity well. Direct electron transfer between Hb and the resulting electrode was achieved without the aid of any electron mediator. The reduction currents to hydrogen peroxide (H2O2) at co-immobilized electrodes showed a linear relationship with H2O2 concentration over a concentration range from 6.0?×?10?6 to 5.0?×?10?2 mol L?1, and a detection limit of 2.0?×?10?6 mol L?1 (S/N?=?3).  相似文献   

9.
A simple, rapid and accurate high performance liquid chromatographic (HPLC) technique coupled with chemiluminescence (CL) detection was developed for the simultaneous determination of epinephrine (E), noradrenaline (NA) and dopamine (DA). It was based on the analyte enhancement effect on the CL reaction between luminol and potassium ferricyanide. The effects of various parameters, such as potassium ferricyanide concentration, luminol concentration, pH value and component of the mobile phase on chromatographic behaviors of the analytes (E, NA and DA) were investigated. The separation was carded out on C18 column using the mobile phase of 0.01 mol/L potassium hydrogen phthalate solution and methanol (92 : 8, V/V). Under the optimum condi- tions, E, NA and DA showed good linear relationships in the range of 1 × 10^-8 -5 × 10^-6, 5.0× 10^-9 -1.0× 10^-6 and 5.0×10^-9-1.0× 10^-6 g]mL respectively. The detection limits for E, NA and DA were 4.0×10^-9, 1.0× 10^-9 and 8.0 × 10^-10 g/mL. The proposed method has been applied successfully to the analysis of E, NA and DA in human serum samples.  相似文献   

10.
A method is described for determination of fenbufen that is based on the chemiluminescence (CL) reaction of the ${\text{Ru}}\left( {{\text{phen}}} \right)_3^{2 + } $ –cerium(IV)–fenbufen system. An enhanced CL reaction was developed, and optimum conditions for CL were investigated. The CL was linearly dependent on fenbufen concentration in the range 4.0?×?10?8–9.0?×?10?6 mol L?1. The detection limit was 2.0?×?10?8 mol L?1. The relative standard deviation (RSD) was 2.8% for eleven measurements of 6.0?×?10?7 mol L?1 fenbufen standard solution. The new method enables simple, sensitive, and rapid determination of fenbufen and has been used for determination of fenbufen in pharmaceutical preparations in capsule, spiked serum and urine samples.  相似文献   

11.
《Analytical letters》2012,45(5):750-762
A simple, low cost sensor was developed for the voltammetric determination of hydrogen peroxide in mouthwash and dental whitening gel based on multi-walled carbon nanotubes incorporated with hemin. The sensor showed electrocatalytic activity toward the reduction of hydrogen peroxide in 0.05 mol L?1 Tris-HCl buffer solution (pH 7.0) using cyclic voltammetry. The optimum composition of paste was 20:10:70% (m/m/m) (multi-walled carbon nanotubes:hemin:mineral oil). A linear plot of the square root of scan rate vs. cathodic peak current showed that reduction of hydrogen peroxide is diffusion controlled. Using linear sweep voltammetry, the analytical curve ranged from 0.2 up to 1.4 mmol L?1 (r = 0.9996) with a sensitivity of 3.62 × 10?2 mA mol?1 L. The limits of detection and quantification were found to be 12.5 µmol L?1 and 41.7 µmol L?1, respectively. The developed method was applied for hydrogen peroxide determination in dental formulations. The results were compared with a volumetric method as a reference technique. No significant differences at the 95% level (paired student t test) were observed, thus demonstrating the accuracy of the sensor for the analysis of real samples.  相似文献   

12.
《Analytical letters》2012,45(12):2471-2487
ABSTRACT

A careful study of the parameters affecting the chemiluminescent reaction of TCPO (bis(2,4,6-trichlorophenyl)oxalate) and 2-NPO (bis(2-nitrophenyl)oxalate) with hydrogen peroxide, in the presence of imidazole (used as buffer and catalyst) and the fluorophore 3-AFA (3-aminofluoranthene), was carried out in acetonitrile/water medium. The data are reported in terms of the time (tImax) required for the relative maximum chemiluminescence intensity (Imax) and the area (A) under the curve of intensity νs. time. At controlled acidity and high unprotonated imidazole concentration ([IMI] = 1x10?2 mol.L?1), the Imax and tImax values do not depend on the acetonitrile/water ratio. The CL intensity is maximum at around pH 6.0 (higher buffer capacity). For 1x10?2 < [IMI] < 1x10?4 mol.L?1, the area is largest when [IMI] = 1x10?3 mol.L?1 and linearly dependent on the hydrogen peroxide concentration (10?5 ? 10?3 mol.L?1). The area is also enhanced by increasing the fluorophore concentration. The acidity controls the unprotonated imidazole and H+ concentration. Several errors can arise from quantitative analyses carried out without control of the HIMI+ and IMI concentrations.  相似文献   

13.
A layer-by-layer assembled of a polypyrrole and polyluminol was synthesized through the electrodeposition of pyrrole and luminol in acidic medium on a graphite electrode. The electrode was then modified by casting titanium dioxide (TiO2) nanoparticles on its surface for enhancing electrochemiluminescence of luminol. The properties of this electrochemiluminescence sensor were studied by cyclic voltammetry, electrochemical impedance spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results demonstrated that the modification of this electrochemiluminescence sensor shows sensitive response for the determination of hydrogen peroxide. Figures of merit include broad linearity from 1?pmol L?1 to 4?µmol L?1 (R2?=?0.996) with a limit of detection as low as 0.40?pmol L?1 at a signal-to-noise ratio of three and good reproducibility with relative standard deviation of 4% for the determination of a 400?nmol L?1 hydrogen peroxide solution (n?=?4), along with favorable long-term stability. The presence of glucose, citric acid, uric acid, dopamine, and ascorbic acid at concentrations as high as 100?nmol L?1 of H2O2 did not produce any electrochemiluminescence signals, which demonstrates the selective nature of this modified electrode. The sensor was also used for the determination of H2O2 in mouthwash formulations and dental whitelight gels.  相似文献   

14.
We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about ?0.17?V (vs. SCE) at pH?6.86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0.08 to 250?μM concentration range. The detection limit is 0.05?μM (at S/N?=?3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP.
Figure
(A) FIA it graphs of the different concentrations of H2O2 at CS/Hb/AgNP/CPE in the PBS (pH?6.86). Applied potential: ?0.4?V. (1) 0.8?×?10?6?mol?L?1, (2) 2.4?×?10?6?mol?L?1, (3) 4?×?10?6?mol?L?1 (B) Plot of catalytic peak currents vs. the concentration of H2O2.  相似文献   

15.
《Electroanalysis》2005,17(23):2129-2136
The investigation of the dissolved iron(III)–nitrilotriacetate–hydroxide system in the water solution (I=0.1 mol L?1 in NaClO4; pH 8.0±0.1) using differential pulse cathodic voltammetry, cyclic voltammetry, and sampled direct current (DC) polarography, was carried out on a static mercury drop electrode (SMDE). The dissolved iron(III) ion concentrations varied from 2.68×10?6 to 6×10?4 mol L?1 and nitrilotriacetate concentrations were 1×10?4 and 5×10?4 mol L?1. By deconvoluting of the overlapped reduction voltammetric peaks using Fourier transformation, four relatively stable, dissolved iron(III) complex species were characterized, as follows: [Fe(NTA)2]3?, mixed ligand complexes [FeOHNTA]? and [Fe(OH)2NTA]2?, showing a one‐electron quasireversible reduction, and binuclear diiron(III) complex [NTAFeOFeNTA]2?, detected above 4×10?4 mol L?1 of the added iron(III) ions, showing a one‐electron irreversible reduction character. The calculations with the constants from the literature were done and compared with the potential shifts of the voltammetric peaks. Fitting was obtained by changing the following literature constants: log β2([Fe(NTA)2]3?) from 24 to 27.2, log β1([FeNTA]?) from 8.9 to 9.2, log β2([Fe(NTA)2]4?) from 11.89 to 15.7 and log β2([Fe(OH)2NTA]3?) from 15.63 to 19. The determination of the electrochemical parameters of the mixed ligand complex [FeOHNTA]?, such as: transfer coefficient (α), rate constant (ks) and formal potential (E°') was done using a sampled DC polarography, and found to be 0.46±0.05, 1.0±0.3×10?3 cm s?1, and ?0.154±0.010 V, respectively. Although known previously in the literature, these four species have now for the first time been recorded simultaneously, i.e. proved to exist simultaneously under the given conditions.  相似文献   

16.
《Analytical letters》2012,45(16):2593-2605
A method was developed for the determination of vitamin B12 based on the enhancement of cobalt (II) on the chemiluminescence (CL) reaction between luminol and percarbonate (powerful source of hydrogen peroxide). The release of cobalt (II) from the vitamin B12 was reached by a simple and fast microwave digestion (20 s microwave digestion time and a mix of nitric acid and hydrogen peroxide). A charge coupled device (CCD) photodetector, directly connected to the cell, coupled with a simple continuous flow system was used to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction.

The optima experimental conditions were established: 8.0 m mol L?1 luminol in a 0.075 mol L?1 carbonate buffer (pH 10.0) and 0.15 mol L?1 sodium percarbonate, in addition to others experimental parameters as 0.33 mL s?1 flow rate and 2 s integration time, were the experimental conditions which proportionate the optimum CL emission intensity. The emission data were best fitted with a second-order calibration graph over the cobalt (II) concentration range from 4.00 to 300 µ g L?1 (r2 = 0.9990), with a detection limit of 0.42 µ g L?1. The proposed method was successfully applied to the determination of vitamin B12 in pharmaceuticals.  相似文献   

17.
Tryptophan is an important amino acid for humans with a significant role in cell metabolism. Depletion of tryptophan in the human body may contribute to diseases and development of disorders among the human population. It is, therefore, very important to have a reliable, stable, sustainable, and cost-effective analytical method for the determination of tryptophan. Tryptophan was determined using sequential injection–zone fluidics analysis with luminol–hydrogen peroxide and the Firefly with its unique liquid core waveguide flow-cell design as chemiluminescence tubular reactor with a high-sensitivity photomultiplier tube. This was based on an intense chemiluminescence formation of tryptophan in luminol–hydrogen peroxide inside the tubular reactor for measurement. The chemiluminescence intensity was linear with tryptophan in the range of 1.0?×?10?6 to 1.0?×?10?3?mol/L, and the limit of detection was 7.5?×?10?7?mol/L. The precision for the method was 3.6% (relative standard deviation) for six measurements of 1.0?×?10?4?mol/L tryptophan. The proposed method has been used to determine tryptophan in pharmaceutical formulations. The system is relatively fast for online assays. Eighty seconds are required to complete one cycle providing a throughput of 45 samples/h. The proposed sequential injection analysis–zone fluidics–chemiluminescence system for the assay of tryptophan in certain specific pharmaceutical capsules is simple, reliable, sustainable, and convenient with relatively low-cost consumption of reagents.  相似文献   

18.
A novel biopolymer/room‐temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1‐butyl‐3‐methylimidazolium tetra?uoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL‐carrageenan composite ?lm on the surface of glassy carbon electrode (GCE) were investigated. UV‐vis spectroscopy demonstrated that Hb in the IL‐carrageenan composite ?lm could retain its native secondary structure. A pair of well‐de?ned redox peaks of Hb was obtained at the Hb‐IL‐carrageenan composite ?lm modi?ed electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s?1, indicating great facilitation of the electron transfer between Hb and IL‐carrageenan composite film modi?ed electrode. The modi?ed electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0×10?6 to 1.5×10?4 mol/L and the detection limit was 2.12×10?7 mol/L (S/N=3). The apparent Michaelis‐Menten constant KMapp for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high af?nity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.  相似文献   

19.
Two ruthenium(II) complexes [Ru(MeIm)4(L)]2+ (L?=?2-(imidazo-4-group)-1H-imidazo-[4,5-f][1,10]phenanthroline, 2-(thiophene-2-group)-1H-imidazo[4,5-f][1,10]phenanthroline, MeIm?=?1-methylimidazole) have been synthesized according to literature and structurally characterized. The interaction of the complexes with calf thymus DNA has been explored using electronic absorption titration, competitive binding experiment, circular dichroism, thermal denaturation, and viscosity measurements. The results show that both complexes could bind DNA in a intercalation mode and the DNA-binding affinity of [Ru(MeIm)4(tip)]2+ (K b?=?(7.2?±?0.3)?×?105?(mol?L?1)?1) is greater than that of [Ru(MeIm)4(iip)]2+ (K b?=?(6.1?±?0.2)?×?105?(mol?L?1)?1).  相似文献   

20.
A room temperature ionic liquid (IL) 1‐butyl‐3‐methylimidazolium hexafluorophosphate functionalized graphene (GE) was prepared and a hydrogen peroxide (H2O2) biosensor was fabricated by immobilizing hemoglobin (Hb) into the IL‐GE composite film. UV‐visible and Fourier transform infrared spectra of the composite film indicated that Hb retained its native structure in the film. Electrochemical investigation of the biosensor showed a pair of well‐defined, quasi‐reversible redox peaks with Epa=?0.209 V and Epc= ?0.302 V (vs. SCE) in pH 7.0 phosphate buffer solution at the scan rate of 100 mV/s. To the reduction of H2O2, the biosensor had a good linear range from 8.0×10?7 to 1.8×10?4 mol/L with a detection limit of 3.0×10?7 mol/L. The apparent Michaelis‐Menten constant KappM was estimated to be 3.4×10?5 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号