首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomass burning has a strong influence on the atmospheric aerosol composition through particulate organic, inorganic, and soot emissions. When biomass burns, cellulose and hemicelluloses degrade, producing monosaccharide anhydrides (MAs) such as levoglucosan, mannosan, and galactosan. Therefore, these compounds have been commonly used as tracers for biomass burning. In this study, a fast water-based method was developed for the routine analysis of MAs, based on high-performance anion-exchange chromatography with electrospray ionization mass spectrometry detection. This method combines simple sample preparation, fast separation, and the advantages of the selective detection with MS. Analysis run was optimized to the maximum separation of levoglucosan, mannosan, and galactosan with 15-min analysis. The validation results indicated that the method showed good applicability for determination of MA isomer concentrations in ambient samples. The limit of detection was 100 pg for levoglucosan and 50 pg for mannosan and galactosan. Wide determination ranges enabled the analysis of samples of different concentration levels. The method showed good precision, both for standard solutions (3.9–5.9% RSD) and for fine particle samples (4.3–8.5% RSD). Co-elution of internal standard (carbon-13-labeled levoglucosan) and sugar alcohols with levoglucosan decreased the sensitivity of levoglucosan determination. The method was used to determine the MA concentrations in ambient fine particle samples from urban background (Helsinki) and rural background (Hyytiälä) in Finland. The average levoglucosan, mannosan, and galactosan concentrations were 77, 8.8, and 4.2 ng?m?3 in Helsinki (winter 2008–2009) and 17, 2.3, and 1.4 ng?m?3 in Hyytiälä (spring 2007), respectively. The interrelation of the three MA isomers was fairly constant in the ambient fine particle samples.  相似文献   

2.
Biomass burning is becoming an increasing contributor to atmospheric particulate matter, and concern is increasing over the detrimental health effects of inhaling such particles. Levoglucosan and related monosaccharide anhydrides (MAs) can be used as tracers of the contribution of wood burning to total particulate matter. An improved gas chromatography–mass spectrometry method to quantify atmospheric levels of MAs has been developed and, for the first-time, fully validated. The method uses an optimised, low-volume methanol extraction, derivitisation by trimethylsilylation and analysis with high-throughput gas chromatography–mass spectrometry (GC–MS). Recovery of approximately 90 % for levoglucosan, and 70 % for the isomers galactosan and mannosan, was achieved using spiked blank filters estimates. The method was extensively validated to ensure that the precision of the method over five experimental replicates on five repeat experimental occasions was within 15 % for low, mid and high concentrations and accuracy between 85 and 115 %. The lower limit of quantification (LLOQ) was 0.21 and 1.05 ng m?3 for levoglucosan and galactosan/mannosan, respectively, where the assay satisfied precisions of ≤20 % and accuracies 80–120 %. The limit of detection (LOD) for all analytes was 0.105 ng m?3. The stability of the MAs, once deposited on aerosol filters, was high over the short term (4 weeks) at room temperature and over longer periods (3 months) when stored at ?20 °C. The method was applied to determine atmospheric levels of MAs at an urban background site in Leicester (UK) for a month. Mean concentrations of levoglucosan over the month of May were 21.4?±?18.3 ng m?3, 7.5?±?6.1 ng m?3 mannosan and 1.8?±?1.3 ng m?3 galactosan. Figure
Monosaccharide anhydride levels and percent contribution to PM10 from filter punches taken every 24 h at an urban background site in Leicester, analysed by GC–MS. G galactosan, M mannosan, L levoglucosan  相似文献   

3.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM) with a diameter <10 µm (PM10, 50% cut off) were investigated in the Kathmandu Valley, Nepal, during 2003. In order to understand the dynamics of atmospheric PAHs in winter, the PAH concentrations in total PM and in the gaseous phase were investigated in the valley in December 2005. Total of 45 PAH compounds (∑45PAHs) were analysed by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). In 2003, the ∑45PAH concentrations in PM10 ranged between 4.3 and 89 ng m?3 (annual average; 27 ± 24 ng m?3). The average concentrations of ∑45PAHs in December 2005 were 210 ± 33 ng m?3 in total PM and 430 ± 90 ng m?3 in the gaseous phase. The ∑45PAH concentration in PM accounted for more than 30% of the sum of their particulate and gaseous forms. Phenanthrene (Ph) was the most predominant compound in the gaseous phase, whereas four- to seven-ring PAHs were predominant in total PM. The highest values of ∑45PAHs occurred in the winter and spring. Estimates of emission sources based on diagnostic molecular ratios showed that atmospheric PAHs in the Kathmandu Valley mainly originated from the exhaust gas of diesel engine. In the winter and spring, PAH pollution would be accelerated by the operations of brick kilns and the frequent formation of an atmospherically stable layer in the valley.  相似文献   

4.
An ICP-OES procedure was developed for fast and accurate determination of various crustal (Al, Ca, Fe, Mg, Si) and trace elements (Ba, Cu, Mn, Na, K, Sr, Ti, Zn) in airborne particulate matter. The method is based on a preliminary treatment of the aerosol samples with a mixture of nitric acid and hydrogen peroxide at elevated temperature leading to a mineralization of the organic sampling substrate, dissolution of soluble material and homogeneous suspension of the remaining non-soluble fraction. After dilution the derived slurry solutions were measured using ICP-OES. The reproducibility of analysis given as the relative standard deviation (% RSD) varied between 3.2 and 6.8% for bulk constituents such as Al, Ca, Fe, Mg and Si whereas values ranging from 3.5 to 9.1% were obtained for trace metals present with distinctly lower abundance in PM10 (e.g. Ba, Cu, Mn, Sr, Zn). The limits of detection (LOD) calculated as three times the standard deviation (3σ) of the signal derived from filter blank samples ranged from approximately 1?ng?m?3 (Sr) to 71?ng?m?3(Ca). The developed procedure was evaluated by comparing the obtained results with the findings derived for the same set of aerosol samples analyzed using a microwave procedure for sample dissolution with subsequent ICP-OES analysis. Finally the developed procedure was applied for the analysis of crustal and trace elements in PM10 samples collected at an urban site (Getreidemarkt, Vienna) and a rural site (Hartberg, Styria), in Austria. The concentrations of the investigated crustal elements varied between some hundred ng?m?3 and few µg?m?3 with highest concentrations for Fe and Si, distinctly reduced concentrations ranging from some ng?m?3 (Sr) to more than hundred ng?m?3 (K) were found for trace elements. Observed PM10 concentrations were found to be in accordance to literature findings from urban sites in central Europe.  相似文献   

5.
A fast, selective, and sensitive method for the determination of three monosaccharide anhydrides (galactosan, mannosan, levoglucosan), based on hydrophilic interaction chromatography and Fourier transform mass spectrometry, was successfully developed. The simple experimental stationary phase and mass spectrometry performance screening allowed the selection of the best available chromatographic and mass spectrometry conditions. Thus, the chromatographic separation was performed on a highly selective stationary phase containing a zwitterionic phosphorylcholine group and the monosaccharide anhydrides were detected as [M+HCOO]? adduct in the negative mode. The method showed accuracy in the range of 84–111 and 89–102% with interbatch precision expressed as relative standard deviations of 5.6–15.4 and 5.0–9.0% for the aerosol extract and snow samples, respectively. The limit of quantification in absolute values ranged from 10 to 30 pg, the limit of quantification, expressed as concentration, ranged was 0.3–0.9 ng/m3 for aerosol and 10–20 ng/mL for snow samples. The method was successfully applied for the determination of monosaccharide anhydrides in aerosol and snow samples.  相似文献   

6.
The development of a sensitive and specific method of determining individually the five tetraalkyllead compounds normally present in ambient air is described. The method is based on collection of the analytes on a porous polymer using a prefilter to destroy ozone and prevent decomposition of the sample during collection and storage. Two-stage thermal desorption, separation by gas chromatography and detection by modified flame atomic absorption spectrometry gives detection limits (3σ) of ca. 0.25 ng Pb m?3 for tetramethyllead and 0.37 ng Pb m?3 for tetraethyllead in an air sample of 80 dm3 collected over a 3–24 h period. Environmental sampling by this method in paralle with a wet chemical (iodine monochloride) method was used to validate the method. During the comparative study, higher organic lead levels were consistently found by the iodine monochloride method; it is postulated that this indicates the presence of vapour-phase tri-(or di)-alkyllead in excess of 1 ng Pb m?3 in rural air. The versatility of the method is demonstrated by the results of atmospheric sampling at two locations, one rural and one at the kerbside in a city centre.  相似文献   

7.
Dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction and preconcentration of diethofencarb (DF) and pyrimethanil (PM) in environmental water. In the method, a suitable mixture of extraction solvent (50 µL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) are injected into the aqueous samples (5.00 mL) and the cloudy solution is observed. After centrifugation, the enriched analytes in the sediment phase were determined by HPLC-VWD. Different influencing factors, such as the kind and volume of extraction and dispersive solvent, extraction time and salt effect were investigated. Under the optimum conditions, the enrichment factors for DF and PM were both 108 and the limit of detection were 0.021 ng mL?1 and 0.015 ng mL?1, respectively. The linear ranges were 0.08–400 ng mL?1 for DF and 0.04–200 ng mL?1 for PM. The relative standard deviation (RSDs) were both almost at 6.0% (n = 6). The relative recoveries from samples of environmental water were from the range of 87.0 to 107.2%. Compared with other methods, DLLME is a very simple, rapid, sensitive (low limit of detection) and economical (only 5 mL volume of sample) method.  相似文献   

8.
A simple extraction and cleanup procedure has been developed for the analysis of 24 organophosphorus (OP), organochlorine (OC) and pyrethroid (PY) pesticides in mineral and peat soils using modified QuEChERS method. The pesticides were extracted from the soil with acidified acetonitrile. The water was removed from the extract by salting out with sodium chloride and addition of magnesium sulfate. For OP pesticides, the extracts were cleaned up with 0.2 g of primary secondary amine packed in glass Pasteur pipette and determined by gas chromatography with flame photometric detector. For OC and PY pesticides, the extracts were cleaned up with 0.2 g of silica gel packed in a glass Pasteur pipette and determined by gas chromatography with electron capture detector. After the cleanup, the extracts had lower colour intensity and reduced matrix interferences. The recovery of the OP and OC pesticides for mineral and peat soils determined at 0.01–1.0 mg kg?1 fortification levels ranged from 79.0–120.0% and 82.2–117.6%, respectively. The detection limits for OP and OC pesticides were 0.001–0.01 and 0.002–0.005 mg kg?1, respectively. The recovery of the PY pesticides ranged from 87.5–111.7% at the detection limits of 0.002–0.010 mg kg?1. The relative standard deviations for all pesticides studied were below 10.8%. The modified method was simple, fast, and had utilized less reagents than the conventional methods. The method was applied to the determination of the pesticide residues in mineral and peat soil samples collected from the vegetable farms.  相似文献   

9.
A simple on-line method for simultaneous determination of some oestrogens including oestriol (E3), norethisterone (NORE), ethynylestradiol (EE2), D-norgestrel (NORG) and bisphenol A (BPA), in environmental liquid samples was developed by coupling in-tube solid phase microextraction (in-tube SPME) to high-performance liquid chromatography with diode array (DAD) and fluorescence (FLD) detectors. Two capillary chromatographic columns (Supel-Q? and Carboxen? 1006 porous layer open tubular) were selected to develop this method. To achieve optimum extraction performance, several parameters were investigated including number of draw/eject cycles and the sample volume for each of the columns. Reproducibility was satisfactory for inter- and intra-day precision, yielding % RSDs of less than 10% and 7.6%, respectively. Limits of detection (LODs) and quantification (LOQs) for the proposed method using a DAD detector were achieved in the ranges of 0.04–0.63?ng?mL?1 and 0.12–1.9?ng?mL?1, depending of the capillary column used. Fluorescence detection improved these parameters for E3, BPA and EE2, obtaining LODs of 0.005–0.03?ng?mL?1 and LOQs of 0.015–0.08?ng?mL?1 using Supel-Q and LODs of 0.01–0.015?ng?mL?1 and LOQs of 0.025–0.04?ng?mL?1 using Carboxen. The proposed method was successfully applied to spiked environmental waters obtaining recoveries greater than 80%.  相似文献   

10.
The atmospheric levels of polycyclic aromatic hydrocarbons (PAHs) in atmospheric samples taken at two urban sites and two sites near industrial areas of the Tarragona region (Catalonia, Spain), where one of the most important petrochemical complexes in the south of Europe is located, were determined. Gas and particulate phase of air were separately sampled and analysed. Concentrations of 16 PAHs studied ranged from 4.2 to 22.5 ng m?3, with predominant levels of PAHs appearing in gas phase (~90% of total PAHs). In all samples, the most abundant compounds were phenanthrene, with a contribution to total PAHs between 32 and 44%, followed by naphthalene, fluorene and fluoranthene (contribution range: 10–22%). The levels of total PAHs, expressed as benzo[a]pyrene toxic equivalent factors (BaPTEF), were lower than 0.06 ng m?3.  相似文献   

11.
Currently, the concentrations of methylamines in fine particulate matter (PM) are most often measured by aerosol time-of-flight mass spectrometry. A novel method for identification and determination of methylamines and methylamine-N-oxides in fine particles based on solid phase extraction (SPE) coupled with ion chromatography (IC) was developed. The experimental conditions including SPE conditions and chromatographic conditions were optimized. The quartz filter loaded with particulate matter (PM) samples was ultrasonically extracted with 20 mL of methanol and water (1:3, V/V) and the extraction process was repeated twice. After extraction, a total of 60 mL of extraction solvent was dropped into the extraction equipment for SPE. The Agilent AccuBond C18 was chosen for enriching the methylamine, dimethylamine, trimethylamine and trimethylamine-N-oxide in fine particles. Under the optimum conditions, the target species on Agilent AccuBond C18 were washed by 0.5 mL of acetonitrile solution and then concentrated (2 mL) before injecting into IC for analysis. A PRP X-200 (250 mm × 4 mm i.d.) was used for separation of analytes at 25 °C. The mobile phase was a mixture of 3% (V/V) acetonitrile solution and 5 mM nitric acid with the flow rate of 1 mL min–1. The four aliphatic amine species were fully resolved and completely separated within 30 min. The linearity of the four compounds ranged from 0.45 μg kg–1 to 1000 μg kg–1 with precisions of 2%–4% and detection limits of 0.002–0.003 μg m–3. The recoveries of the four aliphatic amine species in real PM samples were higher than 90%. This method was successfully applied in the analysis of real fine PM samples collected in Beijing. The concentrations of trimethylamine and methylamine-N-oxides were in the range of (0.01 ± 0.001) μg m–3–(0.08 ± 0.002) μg m–3 and (0.05 ± 0.001) μg m–3–(0.14 ± 0.002) μg m–3 for Beijing dust and haze PM samples, respectively.  相似文献   

12.
The diluted sample is passed through a SepPak C18 cartridge and the toxin is eluted with acetonitrile/water (3:7, v/v). The extract is cleaned up on a SepPak silica cartridge. The antidiagonal spot application technique is used for two-dimensional thin-layer chromatography. Spots are quantified by fluorescence densitometry. Recoveries of aflatoxin M1 added in the range 0.03-0.1 ng g?1 of milk are 86–97%. The detection limit is about 0.005 ng g?1 for milk and 0.05 ng g?1 for milk powder.  相似文献   

13.
A method for the determination of fluoride by reversed-phase, high-performance liquid chromatography (RP-HPLC) is described. Fluoride, La3+ and alizarin complexone form F-La3+-alizarin complexone ternary complex, which is separated from the matrix on a RP, Ultrasphere C18 column (250 × 4.6 mm, 5 μm) using methanol-water (19:81, v/v) mobile phase at 1.00 mL min?1; detection at 568 nm. The calibration graph was linear from 1.0–150 ng mL?1 for fluoride with a correlation coefficient: 0.9993 (n=6). The detection limit was 0.2 ng mL?1. The method was successfully applied to the determination of fluoride in river and tap water. Recovery was: 94–102%, RSD in the range: 1.9 –3.6%.  相似文献   

14.
A methodology based on microwave‐assisted extraction (MAE) and LC with fluorescence detection (FLD) was investigated for the efficient determination of 15 polycyclic aromatic hydrocarbons (PAHs) regarded as priority pollutants by the US Environmental Protection Agency and dibenzo(a,l)pyrene in atmospheric particulate samples. PAHs were successfully extracted from real outdoor particulate matter (PM) samples with recoveries ranging from 81.4 ± 8.8 to 112.0 ± 1.1%, for all the compounds except for naphthalene (62.3 ± 18.0%) and anthracene (67.3 ± 5.7%), under the optimum MAE conditions (30.0 mL of ACN for 20 min at 110°C). No clean‐up steps were necessary prior to LC analysis. LOQs ranging from 0.0054 ng/m3 for benzo(a)anthracene to 0.089 ng/m3 for naphthalene were reached. The validated MAE methodology was applied to the determination of PAHs from a set of real world PM samples collected in Oporto (north of Portugal). The sum of particulate‐bound PAHs in outdoor PM ranged from 2.5 and 28 ng/m3.  相似文献   

15.
A methodology for the sampling and determination of airborne pesticides has been developed. The trapping efficiency of three adsorbents, namely XAD-2,XAD-4 and a sandwich sorbent (PUF-XAD2-PUF), was tested for 34 pesticides and the latter was selected because it presented the highest retention capacity without breakthrough. Pesticides were determined by gas chromatography coupled to an ion trap mass spectrometer in tandem. The method showed recoveries ranging from 70% to 120% with limits of quantification in the range of 16.1–322.6 pg m?3 when 155 m3 were sampled. This analytical strategy was applied to 10 indoor air samples collected in dwellings from the Valencian Region. Six pesticides, namely diphenylamine, pyrimethanil, bifenthrin, lambda-cyhalothrin, permethrin and cypermethrin were detected in indoor samples with concentrations ranging from 1.46 to 22.02 ng m?3.  相似文献   

16.
Heavy metals in various size modes of the atmospheric aerosol are a concern for human health. Their and other elements’ concentrations are indicative for anthropogenic and natural aerosol sources. Si, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Hg, and Pb were determined as a complementary contribution to a study on aerosol cycling during the wet season, June 2004, in a humid, subtropical climate, i.e. in the city of Salina Cruz, situated on the Pacific coast of the Isthmus of Tehuantepec (16.2°N, 95.2°W), Mexico. For mass (gravimetry) and elemental analyses, particles were collected by a Berner low-pressure round nozzle cascade impactor using four stages corresponding to 0.1–0.25, 0.25–1.0, 1.0–4.0, and 4–16?µm of aerodynamic particle size. The impaction plates were modified such that approx. 1/6 consisted of a plastic support (Persplex®) for total reflection X-ray fluorescence spectrometry (TXRF). The elements’ total content was determined by TXRF without any further sample pretreatment. Limits of quantification (LOQ) for elemental content in individual impactor stages corresponded to 25–60?ng?m?3 for Si; 0.8–4?ng?m?3 for Cl, K, Ca, Ti, and V; 3–20?pg?m?3 for Cr, Mn, Fe, Cu, Ni, and Zn; and 7–50?pg?m?3 for As, Se, Br, Rb, Sr, Hg, and Pb. In some samples, however, high blank values for the supports gave an LOQ?=?6–19?ng?m?3 for Cl; 3--7?ng?m?3 for Ca; 3–7?ng?m?3 for Fe, Ni, Cu, and Zn; and 60–70?ng?m?3 for Pb. The influence of local natural, industrial, and vehicle traffic sources for heavy-metal mobilization was obvious. Heavy-metal abundances did not coincide with regionally distributed pollutants. V and Ni were found at particularly elevated levels advected with the sea breeze, which points to ships as sources. Br and Pb were found at particularly low levels. The concentrations of Br, Rb, Sr, and Pb were found below LOQ at least in some, As, Co, Se, and Hg in all of the samples. The elements’ characteristic differences in mass size distributions were obvious despite the coarse size resolution. During the cycling of air masses from land to sea and back again, enrichment of super-micrometre particles in the near ground aerosol was observed under dry weather conditions. Rain preferentially removed the large particles with which heavy metals have been associated.  相似文献   

17.
The particulates are collected on Whatman 41 cellulose filters and decomposed with sulfuric acid and hydrogen peroxide; bismuth is then measured by hydride generation/atomic absorption spectrometry. The detection limis is 0.08 ng m?3 if 500 m3 of air is filtered through an 11-cm filter. Generally, the precision is better than 10%. The concentrations found in Ghent, Belgium varied between 0.1 and 0.8 ng m?3. Bismuth was also determined in NBS Orchard leaves (SRM 1571); a value of 98.5 ± 15 ng g?1 was found.  相似文献   

18.
In the present work the determination of benzene, toluene, ethylbenzene and o-xylene (BTEX) in environmental sample solutions using gas chromatography with flame ionisation detection (GC-FID) combined with three different sampling techniques, such as; direct single drop microextraction (DI-SDME), headspace single drop microextraction (HS-SDME) and ultrasonic assisted HS-SDME, were compared. In all of these techniques, for the determination of BTEX, the experimental parameters such as organic solvent effect, extraction time, agitation speed and salting effect were optimised. At their optimised conditions of operation the detection limits, times of extraction and precision for the three techniques are established. A detailed comparison of the analytical performance characteristics of these techniques for final GC-FID determination of BTEX in water samples was given. The technique provided a linear range of 50–20000?ng?mL–1 for DI-SDME and 10–20000?ng?mL–1 for HS-SDME methods, good repeatability (RSDs <4.72–7.74% for DI-SDME and 1.80–7.05% for HS-SDME (n?=?5), good linearity (r?≥?0.9978) and limits of detection (LODs) in the range of 0.006–10?ng?mL?1 for DI-SDME, 0.1–3?ng?mL–1 for HS-SDME methods (S/N?=?3). Then the optimised techniques were also applied to real samples (river and waste waters) containing BTEX and similar precision (RSD?<?8.2,?n?=?3) was obtained.  相似文献   

19.
Novel procedures for the determination of florfenicol in freshwater, sediments and bryophyte Fontinalis antipyretica, using reversed-phase high-performance liquid chromatography are described. Liquid chromatography was performed on a 5 µm PuroSpher RP-18E® column using methanol and 0.05 M phosphate buffer (18/82 v/v, pH 7.3) as mobile phase (0.8 ml min?1) and fluorescence detection (excitation wavelength 265 nm and emission wavelength 295 nm). Florfenicol was determined in centrifuged freshwater samples. Florfenicol was extracted from sediments and bryophytes samples by using a solid-liquid extraction step followed by a solid phase extraction step. Linearity was confirmed over the concentration range 25–1000 ng mL?1 water and 50-1000 ng g?1 sediment or bryophyte. Limits of detection and quantitation were 8 and 25 ng mL?1 water and 17 and 50 ng g?1 sediment or bryophyte respectively. Mean extraction recoveries of florfenicol from sediments and bryophyte were from 85.9 to 109.1%.  相似文献   

20.
Methoxetamine is a new ketamine derivative designer drug which has recently become available via the Internet marketed as “legal ketamine”. It is a new dissociative recreational drug, acting as an NMDA receptor antagonist and dopamine reuptake inhibitor. The objective of this study was to develop on-line automated sample preparation using a TurboFlow device coupled with liquid chromatography with ion-trap mass spectrometric detection for measurement of methoxetamine in human plasma. Samples (100 μL) were vortex mixed with internal standard solution (ketamine-d4 in acetonitrile). After centrifugation, 20 μL of the supernatant was injected on to a 50 mm?×?0.5-mm C18XL Turboflow column. The retained analytes were then back-flushed on to a 50 mm?×?3-mm (3 μm) Hypersil Gold analytical column for chromatographic separation, then eluted with a formate buffer–acetonitrile gradient. Methoxetamine and the IS were ionized by electrospray in positive mode. Parent [M + H]+ ions were m/z 248.1 for methoxetamine and m/z 242.0 for the IS. The most intense product ions from methoxetamine (m/z 203.0) and the IS (m/z 224.0) were used for quantification. The assay was accurate (96.8–108.8 % range) and precise (intra and inter-day coefficients of variation <8.8 %) over the range of 2.0 (lower limit of quantification) to 1000.0 ng mL?1 (upper limit of quantification). No matrix effect was observed. This method has been successfully applied to determination of plasma concentrations of methoxetamine in the first French hospitalization case report after acute intoxication; the plasma concentration was 136 ng mL?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号