首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents the method development, validation, and simultaneous determination of dimethoate and its metabolite omethoate in curry leaf. Samples were extracted following modified quick, easy, cheap, effective, rugged, and safe extraction protocol and analyzed using liquid chromatography-tandem mass spectrometry. The limit of quantification in the matrix was 0.005 μg g−1 for dimethoate and omethoate. Extraction using acetonitrile recorded the average recoveries in the range of 82.25 to 112.97% for dimethoate and 85.57 to 107.22% for omethoate at 0.005, 0.025 and 0.050 μg g−1 fortification levels and relative standard deviation less than 5%. Similarly, the relative standard deviation values for intraday (Repeatability) and interday (Reproducibility) tests were less than 15%. Dissipation kinetics of dimethoate 30% emulsifiable concentrate at 200 and 400 g a.i h−1 recorded initial deposits of 5.20 and 10.05 μg g−1 and 0.33 and 0.48 μg g−1 for dimethoate and omethoate, respectively, and half-life of 3.07 and 3.34 days. The estimated hazard index value found more than one at a day after dimethoate application. It is not safe for consumer health to use curry leaves in the initial days after application.  相似文献   

2.
A study was undertaken to determine the extent of organochlorine pesticide (OP) and polychlorinated biphenyl (PCB) contamination in infant formula milk and in the human milk, fat and serum of women from an agricultural area in Southern Spain. A procedure is proposed that simultaneously detects trace levels of lindane, endosulfan-ether, vinclozolin, aldrin, endosulfan-lactone, endosulfan-alpha, 4,4'DDE, 2,4'DDT, endosulfan-beta, 4,4'DDT, kepone, endosulfate-sulfate, methoxychlor, mirex, 2,3,4 PCB, 2,2',4,5 PCB, 2,3,4,5 PCB and 2,2',3,3',6,6'PCB. After liquid-liquid or solid-liquid extraction, the extract of the sample was cleaned by high performance liquid chromatography (HPLC) and the fi rst eluted fraction was analysed by gas chromatography (GC) with mass spectrometry (MS) detector in tandem mode. To evaluate the validity of the method the following parameters were studied: linearity, detection limits, quantification limits, specificity, percentage recovery and precision. A study of the uncertainty associated with the analytical method was also carried out.  相似文献   

3.
A new highly sensitive analytical method for determining gabapentin [1-(aminomethyl) cyclohexaneacetic acid; Neurontin] in serum using gas chromatography/tandem mass spectrometry (GC-MS/MS) was developed. GC-MS/MS was applied to determine the levels of gabapentin in serum samples of mice at 1 and 6 h after oral or intraperitoneal treatment (300 mg/kg). At 1 h, the concentrations of the drug were 4.02 +/- 0.42 and 4.32 +/- 0.28 microg/mL in mice treated orally and intraperitoneally, respectively. At 6 h, drug levels decreased by about 66% in both groups. The method, coupling two stages of mass analysis, could be very useful in identifying the drug in complex mixtures such as blood and urine. Moreover, it is easy and rapid to perform, and sensitive enough to allow the presence of the drug to be determined at very low detection limits. It is a very reliable method for both clinical and experimental monitoring of gabapentin.  相似文献   

4.
A method for the determination of free iodide in human serum was developed. For this purpose iodide from pooled serum samples was separated from the organic manner by SEC. The iodide fraction subsequently was freezedried and analyzed by ion chromatography for quantification. Investigations for recovery and precision were carried out and were found to show sufficient results. For quality assurance ICP-MS was taken additionally as an total I-detector [1], using native and iodide-spiked serum samples. The iodide results of ICP-MS as well as those of IC were well corresponding. Iodine containing SEC-fractions from iodide-spiked samples showed no increased I-values except that in the iodide fractions, proving that there was no iodide conversion into other I-species (and vice versa) during the whole procedure.Free iodide from two serum pools of different healthy persons was determined as 2.25 and 2.43 g I/L, respectively. The values are related to total iodine levels determined by ICP-MS. For comparative reasons a table of individual iodine and iodide values is presented.Abbreviations IC ion chromatography - ICP-MS inductively coupled plasma mass spectrometry - LPLC low pressure liquid chromatography - PED pulsed electrochemical detector - SEC size exclusion chromatography - RT retention time  相似文献   

5.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of doxofylline (DFL) with 300 microL human serum using imipramine as the internal standard (IS). The API-3,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved direct precipitation of DFL and IS from human serum with acetonitrile. The resolution of peaks was achieved with formic acid (pH 2.5): acetonitrile (10:90, v/v) on an Amazon C(18) column. The total chromatographic run time was 3.0 min and the elution of DFL and IS occurred at approximately 1.46 and 2.15 min, respectively. The MS/MS ion transitions monitored were 267.5 --> 181.1 for DFL and 281.1 --> 86.2 for IS. The method was proved to be accurate and precise at linearity range of 1.00-5,000 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 1.00 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of DFL tablet.  相似文献   

6.
Three methods were developed and validated for determination of nemonoxacin in human feces and its major metabolite, nemonoxacin acyl‐β‐ d ‐glucuronide, in human urine and feces. Nemonoxacin was extracted by liquid–liquid extraction in feces homogenate samples and nemonoxacin acyl‐β‐ d ‐glucuronide by a solid‐phase extraction procedure for pretreatment of both urine and feces homogenate sample. Separation was performed on a C18 reversed‐phase column under isocratic elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. Both analytes were determined by liquid chromatography–tandem mass spectrometry with positive electrospray ionization in selected reaction monitoring mode and gatifloxacin as the internal standard. The lower limit of quantitation (LLOQ) of nemonoxacin in feces was 0.12 µg/g and the calibration curve was linear in the concentration range of 0.12–48.00 µg/g. The LLOQ of the metabolite was 0.0010 µg/mL and 0.03 µg/g in urine and feces matrices, while the linear range was 0.0010–0.2000 µg/mL and 0.03–3.00 µg/g, respectively. Validation included selectivity, accuracy, precision, linearity, recovery, matrix effect, carryover, dilution integrity and stability, indicating that the methods can quantify the corresponding analytes with excellent reliability. The validated methods were successfully applied to an absolute bioavailability clinical study of nemonoxacin malate capsule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Amitriptyline (AMI) has been in use for decades in treating depression and more recently for the management of neuropathic pain. A highly sensitive and specific LC–tandem mass spectrometry method was developed for simultaneous determination of AMI, its active metabolite nortriptyline (NOR) and their hydroxy‐metabolites in human serum, using deuterated AMI and NOR as internal standards. The isobaric E‐10‐hydroxyamitriptyline (E‐OH AMI), Z‐10‐hydroxyamitriptyline (Z‐OH AMI), E‐10‐hydroxynortriptyline (E‐OH NOR) and Z‐10‐hydroxynortriptyline (Z‐OH NOR), together with their parent compounds, were separated on an ACE C18 column using a simple protein precipitation method, followed by dilution and analysis using positive electrospray ionisation with multiple reaction monitoring. The total run time was 6 min with elution of E‐OH AMI, E‐OH NOR, Z‐OH AMI, Z‐OH NOR, AMI (+ deuterated AMI) and NOR (+ deuterated NOR) at 1.21, 1.28, 1.66, 1.71, 2.50 and 2.59 min, respectively. The method was validated in human serum with a lower limit of quantitation of 0.5 ng/mL for all analytes. A linear response function was established for the range of concentrations 0.5–400 ng/mL (r2 > .999). The practical assay was applied on samples from patients on AMI, genotyped for CYP2C19 and CYP2D6, to understand the influence of metaboliser status and concomitant medication on therapeutic drug monitoring.  相似文献   

8.
A robust and sensitive high‐performance liquid chromatographic–tandem mass spectrometric (HPLC‐MS/MS) assay for the high‐throughput quantification of the antihypertensive drug azelnidipine in human plasma was developed and validated following bioanalytical validation guidelines. Azelnidipine and internal standard (IS), telmisartan, were extracted from human plasma by precipitation protein and separated on a C18 column using acetonitrile–methanol–ammonium formate with 0.1% formic acid as mobile phase. Detection was performed on a turbo‐spray ionization source (ESI) and mass spectrometric positive multiple reaction monitoring mode (+MRM) using the respective transitions m/z 583.3 → 167.2 for azelnidipine and m/z 515.3 → 497.2 for IS. The method has a wide analytical measuring range from 0.0125 to 25 ng/mL. For the lowest limit of quantitation, low, medium and high quality controls, intra‐ and interassay precisions (relative standard deviation) were 3.30–7.01% and 1.78–8.09%, respectively. The drug was sufficiently stable under all relevant analytical conditions. The main metabolite of azelnidipine, M‐1 (aromatized form), was monitored semiquantitatively using the typical transition m/z 581.3 → 167.2. Finally, the method was successfully applied to a clinical pharmacokinetic study in human after a single oral administration of azelnidipine 8 mg. The assay meets criteria for the analysis of samples from large research trials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Altered serum proline levels are related to cancer metabolism. This study developed and validated a LC‐MS/MS method to analyze proline in human serum. Surrogate blank serum, coupled with stable isotope l ‐proline‐13C5,15 N as internal standard, was used for generating standard curves ranging from 2.5 to 100 μg/mL. Proline was extracted from serum samples using methanol. A Phenomenex Lux 5u Cellulose‐1 column (250 × 4.6 mm) was used for chromatographic separation with 40% methanol in 0.05% formic acid aqueous solution as a mobile phase. Mass detection was performed under positive ionization electrospray. Intra‐ and inter‐day accuracy and precision were <10%. The extraction recovery and matrix factor were 99.17 and 1.47%, respectively. Our study showed that the chiral column had high specificity and selectivity for separating proline from serum components. The assay was successfully applied for the quantification of human serum proline levels from 30 esophageal cancer patients and 30 healthy volunteers. Statistical analyses showed significantly lower levels of serum proline in the patients as compared with the healthy volunteers (p‐value = 0.011). We report here a simple, specific and reproducible LC‐MS/MS method for the quantification of proline in human serum as a potential screening biomarker for esophageal cancer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
建立了一种测定市售锅巴中的丙烯酰胺含量的方法.该法样品前处理不必经过溴化衍生,样品脱脂后用水提取丙烯酰胺,提取液过活性炭柱,再用乙酸乙酯将活性炭柱中吸附的丙烯酰胺洗脱.洗脱液浓缩后经气相色谱-质谱(GC-MS)定量分析,检测限为0.06 mg/kg,适合测定市售锅巴中的丙烯酰胺的含量.还考察了丙烯酰胺在水的固液两相中的分配比.  相似文献   

11.
A gas chromatography–mass spectrometry assay was developed and validated for the simultaneous determination of phthalates and adipates in human serum. The phthalates and adipates studied were dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzylbutyl phthalate, di‐2‐ethylhexyl phthalate, di‐n‐octyl phthalate, diethyl adipate, dibutyl adipate, diisobutyl adipate, bis(2‐butoxyethyl) adipate and di‐2‐ethylhexyl adipate, with diisooctyl phthalate as internal standard. The extraction and cleaning up procedure was carried out with solid‐phase extraction cartridges containing dimethyl butylamine groups, which showed extraction efficiencies over 88% for each analyte and the internal standard. The calibration curves obtained were linear with correlation coefficients greater than 0.98. For all analytes, the assay gave CV% values for intra‐day precision from 4.9 to 13.3% and mean accuracy values from 91.4 to 108.4%, while inter‐day precision was 5.2–13.4% and mean accuracy 91.0–110.2%. The limits of detection for the assay of phthalates and adipates were in the range 0.7–4.5 ng/mL. The method is simple, sensitive and accurate, and allows for simultaneous determination of nanogram levels of phthalates and adipates in human serum. It was successfully applied to an investigation on the level of phthalates and adipates in a non‐occupationally exposed population.  相似文献   

12.
Pharmaceuticals have become major targets in environmental chemistry due to their presence in aquatic environments (following incomplete removal in wastewater treatment or point-source contaminations), threat to drinking water sources and concern about their possible effects to wildlife and humans. Recently several methods have been developed for the determination of drugs and their metabolites in the lower nanogram per litre range, most of them using solid-phase extraction (SPE) or solid-phase microextraction (SPME), derivatisation and finally gas chromatography mass spectrometry (GC-MS), gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS). Due to the elevated polarity of non-steroidal anti-inflamatory drugs (NSAIDs), analytical techniques based on either liquid chromatography coupled to mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS) after a previous derivatisation step are essential. The most advanced aspects of current GC-MS, GC-MS/MS and LC-MS/MS methodologies for NSAID analysis are presented.  相似文献   

13.
Qian Luo  Minghung Wong  Zongwei Cai   《Talanta》2007,72(5):1644-1649
Analytical method using mass spectrometric techniques was applied for the determination of polybrominated diphenyl ethers (PBDEs) in freshwater fishes. Fish samples collected from Nanyang River contaminated by the recycling electron-wastes (e-wastes) materials were prepared by using Soxhlet extraction and multiple-step column chromatographic clean-up. PBDEs were determined by gas chromatography (GC) coupled with ion trap mass spectrometry (for mono- to hepta-BDEs) and quadrupole mass spectrometry (for BDE-209). The method performance was evaluated with the recovery of 13C-labeled internal standards and with the analysis of certified reference biota. The obtained recoveries ranged from 75 to 125% with a relative standard deviation of lower than 10% for 16 PBDE congeners. The total PBDE (ΣPBDE) concentrations in fishes showed the following trend: grass carp < mud carp < crucian carp < silver carp < carp. ΣPBDE concentrations in the abdomen, back and tail muscles of carp ranged from 766, 458 and 530 ng/g w.w., and 53, 52, 45 ng/g w.w. in grass carp, respectively. The ΣPBDE concentrations in abdomen muscles were no significantly higher than in back and tail muscles in carp, crucian carp, grass carp and mud carp. PBDE congener concentrations in muscles correlated well with their lipid content. BDE-47 and BDE-28 were the most abundant congeners followed by BDE-17, BDE-15, BDE-66, BDE-154 and BDE-153 in fishes collected from Guiyu.  相似文献   

14.
水解法测定血液中的毒鼠强   总被引:4,自引:0,他引:4  
建立了毒鼠强的血液样品水解方法并对相应的GC FPD定量、GC MS定性的分析条件进行了优化 ,同时考察了水解过程中的水解温度、水解强度等方面的影响因素 ,建立了一个提取效率高、灵敏度佳、干扰少的毒鼠强提取分析方法。毒鼠强工作曲线在 0 .0 1~ 0 .2 0 μg μL之间呈线性关系 ,相关系数r=0 .9999。与传统的液 液直接提取方法相比 ,血液样品毒鼠强的检出率提高 1 69% ,并可应用于生物样品的毒鼠强提取分析中。  相似文献   

15.
The antidiabetic drug glibenclamide can be reliably quantitated in human serum with high performance liquid chromatography. The serum is buffered and extracted with toluene. The organic solvent is evaporated, the residue dissolved in the mobile phase and an aliquot sampled automatically and chromatographed. UV-detection at 229 m allows a lower limit of quantitation of 5 ng/ml. Precise handling of exact volumes facilitates external calibration. Statistical data for imprecision and inaccuracy are given and illustrate reliable quantification. Application of the method to experimental and clinical pharmacokinetic studies with specific problems is illustrated.  相似文献   

16.
A simple, accurate, precise and cost effective reversed‐phase HPLC method was developed to determine the concentration of ibudilast in human serum. Ibudilast and an internal standard, butyl 4‐hydroxybenzoate, were extracted by liquid–liquid extraction with methyl tert‐butyl ether. HPLC analysis was carried out under the following conditions: a Luna C18(2) 5 μm column, a mobile phase of acetonitrile–0.02% phosphoric acid (50 : 50, v/v, adjusted to pH 6.0 with triethylamine) and a UV detector at 319 nm. The chromatograms showed good resolution and sensitivity as well as no interference from the human serum. The calibration curves were linear over the concentration range, 1–100 ng/mL, for serum with correlation coefficients >0.999. The intra‐ and inter‐day assay precision as well as the accuracy fulfilled the international requirements. The mean absolute recovery for human serum was 101.7 ± 6.1%. The lower limit of quantitation in human serum was 1 ng/mL, which is sensitive enough for pharmacokinetic studies. Stability studies revealed that ibudilast in human serum was stable during storage as well as during the assay procedure. This method was applied successfully to an examination of the pharmacokinetics of ibudilast in human subjects following a single oral dose of an ibudilast (10 mg) capsule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method for the simultaneous detection of succinylcholine (SUX) and its metabolite succinylmonocholine (SMC) in serum and urine is presented. For internal standardization using isotope dilution, the deuterated compounds SUX-d(18) and SMC-d(3) were employed. Full validation was performed according to international guidelines. Solid-phase extraction (SPE) of acidified samples was accomplished using Strata-X polymeric reversed phase cartridges together with heptafluorobutyric acid (HFBA) as ion-pairing reagent. Separation was achieved within 13 min on a Phenomenex Synergi Hydro RP C18 column (4 microm, 150 x 2 mm) using a gradient of 5 mM ammonium formate buffer pH 3.5 and acetonitrile.To ensure the method's applicability in forensic as well as clinical toxicology, the specific demands of both research fields were taken into account, and the method was thus validated for a low and high concentration range. For both serum and urine as sample matrix, the validation revealed good intraday and interday precisions, consistently ranging below 15% for the lowest and below 10% for elevated concentrations. Accuracy was likewise good and never exceeded 10%. Extraction recovery was excellent, ranging between 88.1 and 103.9% for SUX and SMC in both tested matrices. Matrix effects were significant, the otherwise optimized extraction and detection methods, however, allowed for a very satisfactory sensitivity of the described method: For serum, the limits of detection and quantitation were determined to be 1.9 and 6.0 ng/ml for SUX, as well as 2.5 and 8.6 ng/ml for SMC, respectively; for urine, the corresponding values were established to be 1.4 and 4.0 ng/ml (SUX), as well as 1.5 and 4.9 ng/ml (SMC).The presented method was successfully applied to authentic samples of two forensic cases investigated in the institute of forensic medicine in Bonn, allowing the diagnosis of SUX intoxications.  相似文献   

18.
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) was developed. This assay represents the first LC‐MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3‐atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/mL and 10 nm for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3–900 ng/mL and 10 nm to 10 µm for human plasma and cellular samples, respectively (r2 > 0.999). The intra‐ and inter‐day assay accuracy and precision were evaluated using quality control samples at three different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect and recovery were also successfully demonstrated. The present assay is superior to previously published LC‐MS and LC‐MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive, simple and selective high-performance liquid chromatography-tandem mass spectrometry method was developed and applied to the determination of norcantharidin concentration in human serum. Norcantharidin (NCTD) and cyclophosphamide (IS) in serum were extracted with acetone, separated on a C18 reversed-phase column, gradiently eluted with a mobile phase of acetonitrile-water containing 2 mm ammonium acetate and 0.1% formic acid (pH 3), ionized by positive ion pneumatically assisted electrospray and detected in the multi-reaction monitoring mode using precursor-->product ions of m/z 169.3-->123.1 for NCTD and 261.2-->140.2 for IS, respectively. The linear range of the calibration curve for NCTD was 2.5-50 ng/mL, with a lowest limit of quantification of 2.5 ng/mL, and the intra/inter-day RSD was less than 10%. The method was suitable for determination of low NCTD concentration in human serum after therapeutic oral doses, and has been successfully used for pharmacokinetic studies in healthy Chinese volunteers.  相似文献   

20.
Analytical interest of OA determination in human serum has increased owing to the increasing interest in pharmaceutical research by pharmaceutical properties. A simple, specific, precise and accurate GC method with flame ionization detector (FID) developed and validated for the determination of oleanolic acid (OA) in human serum (HS). To an aliquot of HS, internal standard was added and a combination of liquid–liquid extraction with a mixture of diethyl ether‐isopropyl alcohol, filtration and consecutive GC resulted in separation and quantification of OA. The organic phase was analyzed using a GC system equipped with a 30 × 0.25 mm i.d. Rtx‐65TG capillary column and FID detection. Total chromatographic time was 10 min and no interfering peaks from endogenous components in blank serum were observed. The OA/internal standard peak area ratio was linearly fitted to the OA concentration (r = 0.992) over the range 10–1500 ng/mL. The mean serum extraction recovery of OA was 96.7 ± 1.0% and the lower limit of quantification based on 5 mL of serum was 10.7 ng/mL. The intra‐day coefficient of variation ranged from 1.3 to 3.6% and inter‐day varied from 1.4 to 4.5%. The developed method was used to study the pharmacokinetics of OA after oral administration in humans. The assay was simple, sensitive, precise and accurate for the use in the study of the mechanisms of absorption and distribution of OA in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号