首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Wang  Deqiang  Li  Zuoji  Zhao  Qian  Zhang  Jianguo  Yang  Guang  Liu  Hui 《Journal of Cluster Science》2021,32(5):1175-1183

Developing artificial enzyme mimetics for the detection of small biomolecules are a current research interest because natural enzymes bear some serious disadvantages, such as their catalytic activity can be easily inhibited and they can be digested by proteases. Herein, a heteropoly acids (HPA) encapsulating metal–organic framework (MOF) with metal-carbene structure, [Cu10(H3trz)4(Htrz)4][PMo12VO41] (PMA-MOF) as bifunctional enzyme-mimetic catalyst for colorimetric detection of hydrogen peroxide (H2O2) and ascorbic acid (AA) was designed and synthesized. Thanks to the good stability and the synergistic effect of PMA and MOF, PMA-MOF exhibits the lower limit of detection (0.222 μM towards H2O2 and 0.0046 μM to AA), and the smaller Km value (0.0138 mM for H2O2 and 0.136 mM for o-phenylenediamine) compared to most reported MOF- and HPA-based enzyme-mimetic catalyst, to the best our knowledge.

  相似文献   

2.
Yang  Yang  Fu  Renzhong  Yuan  Jianjun  Wu  Shiyuan  Zhang  Jialiang  Wang  Haiying 《Mikrochimica acta》2015,182(13):2241-2249

We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2.

The Pt NPs/CNF heterostructure-based H2O2 sensor synergizes the advantages of both the conducting carbon nanofibers and the nanoparticle catalyst. The 3D structure of the nanofibers favor high density immobilization of the nanoparticles and penetration by water-soluble molecules, which assists the catalyic oxidation of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.

  相似文献   

3.
Determination of sulfite with emphasis on biosensing methods: a review   总被引:1,自引:0,他引:1  
Sulfite is used as a preservative in a variety of food and pharmaceutical industries to inhibit enzymatic and nonenzymatic browning and in brewing industries as an antibacterial and antioxidizing agent. Convenient and reproducible analytical methods employing sulfite oxidase are an attractive alternative to conventional detection methods. Sulfite biosensors are based on measurement of either O2 or electrons generated from splitting of H2O2 or heat released during oxidation of sulfite by immobilized sulfite oxidase. Sulfite biosensors can be grouped into 12 classes. They work optimally within 2 to 900 s, between pH 6.5 and 9.0, 25 and 40 °C, and in the range from 0 to 50,000 μM, with detection limit between 0.2 and 200 μM. Sulfite biosensors measure sulfite in food, beverages, and water and can be reused 100–300 times over a period of 1–240 days. The review presents the principles, merits, and demerits of various analytical methods for determination of sulfite, with special emphasis on sulfite biosensors.  相似文献   

4.
The hydrogen peroxide is oxidized at + 1.5 V vs. SCE at a glassy carbon electrode of the wall-jet type. The samples are diluted about 100 times in a dispersion coil before entering the amperometric detector. The calibration curve is linear from 10?4 to 1 M H2O2, when 5-μl samples are used. With 50-μl samples the detection limit decreases to 10?6 M H2O2. Neither metal ions (Cu2+, Zn2+, Ni2+, Al3+) up to 0.5 M nor changes in the sulfuric acid concentration of the samples between 0.1 and 1 M interfere with the hydrogen peroxide determination. About 75 samples can be analyzed per hour.  相似文献   

5.
Nanoporous (NP) PdFe alloy is easily fabricated through one step mild dealloying of PdFeAl ternary source alloy in NaOH solution. Electron microscopy characterization demonstrates that selectively dissolving Al from PdFeAl alloy generates three-dimensional bicontinuous nanospongy architecture with the typical ligament size around 5 nm. Electrochemical measurements show that the NP-PdFe alloy exhibits the superior electrocatalytic activity and durability towards hydrogen peroxide (H2O2) detection compared with NP-Pd and commercial Pd/C catalysts. In addition, NP-PdFe performs high sensing performance towards H2O2 in a wide linear range from 0.5 to 6 mM with a low detection limit of 2.1 μM. This nanoporous structure also can sensitively detect glucose over a wide concentration range (1–32 mM) with a low detection limit of 1.6 μM and high resistance against chloride ions. Along with these attractive features, the as-made NP-PdFe alloy also has a good anti-interference towards ascorbic acid, uric acid, and dopamine.  相似文献   

6.
Shi  Libo  Niu  Xiangheng  Liu  Tingting  Zhao  Hongli  Lan  Minbo 《Mikrochimica acta》2015,182(15):2485-2493

We have synthesized nitrogen-doped graphene nanoribbons (N-GrNRs) by unzipping multi-walled carbon nanotubes (CNTs) under strongly oxidizing conditions and subsequent doping with nitrogen by a low-temperature hydrothermal method. The N-GNRs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy, and assembled on a disposable screen-printed carbon electrode to give a sensor for H2O2 that was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and chronoamperometry. The nano-modified electrode displays enhanced electron transfer ability, and has a large active surface and a large number of catalytically active sites that originate from the presence of nitrogen atoms. This results in a catalytic activity towards H2O2 reduction at near-neutral pH values that is distinctly improved compared to electrodes modified with CNTs or unzipped (non-doped) CNTs only. At a working potential of −0.4 V (vs. Ag/AgCl), the amperometric responses to H2O2 cover the 5 to 2785 μM concentration range, with a limit of detection as low as 1.72 μM. This enzyme-free electrochemical sensor exhibits outstanding selectivity and long-term stability for H2O2 detection.

Nitrogen-doped graphene nanoribbons (N-GrNRs) were expediently synthesized for highly sensitive and selective detection of H2O2.

  相似文献   

7.
Wang  Fang  Gong  Wencheng  Wang  Lili  Chen  Zilin 《Mikrochimica acta》2015,182(11):1949-1956

Reduced graphene oxide (RGO) was used to construct a bienzyme biosensor containing horseradish peroxidase (HRP) and glucose oxidase (GOx). A poly(toluidine blue) (pTB) film containing RGO acted as both enzyme immobilization matrix and electron transfer mediator. The bienzyme biosensor was characterized by electrochemical techniques and displays a highly sensitive amperometric response to glucose and hydrogen peroxide (H2O2) at a potential as low as −0.1 V (vs. SCE). It is shown that use of RGO causes a strong enhancement on the amperometric responses. H2O2 formed by the action of GOx in the presence of oxygen can be further reduced by HRP in the pTB film contacting the RGO modified electrode. In the absence of oxygen, glucose oxidation proceeds by another mechanism in which electron transfer occurs from GOx to the electrode and with pTB acting as the mediator. Amperometric responses to glucose and H2O2 follow Michaelis-Menten kinetics. The experimental conditions were optimized, and under these conditions glucose can be determined in the 80 μM to 3.0 mM range with a detection limit of 50 μM. H2O2, in turn, can be quantified in up to 30.0 μM concentration with a detection limit of 0.2 μM. The bienzyme biosensor is reproducible, repeatable and stable. Finally, it has been successfully applied to the determination of glucose in plasma samples.

Schematic representation of glocuse detection at GCE/RGO/pTB-HRP-GOx.

  相似文献   

8.
ABSTRACT

The continuous and selective determination method of formaldehyde (HCHO) in ambient air using chemiluminescence method has been developed. The counter current flow tube was used to collect gaseous formaldehyde. The major interferences of HCHO determination from acetaldehyde, ethanol, and ferrous ion were removed by applying iodoform reaction. Effect of acetaldehyde on chemiluminescence signal of formaldehyde at the same concentration was reduced from 19 to 0.3% by applying iodoform reaction. Subsequently, HCHO was online detected by measuring chemiluminescence produced from the reaction of HCHO, gallic acid, H2O2, and KOH. The limit of detection (S/N = 3) was 4.5 ppbv in air. The calibration graph was linear up to 6.25 ppmv. HCHO concentration measured by the present method showed good agreement with that obtained by the 2–4 DNPH-HPLC method.  相似文献   

9.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

10.
Zusammenfassung Durch homogene Acidifizierung von NH4-, Na- bzw. K-Thiovanadatlösungen wurden die Salze (NH4)2V3O8·1/2 H2O, Na3V5O12·8 H2O und K3V5O12·5 H2O kristallin hergestellt. Die beiden letzteren lassen sich als Dekavanadate(IV, V) mit dem Anion [V8 IVV2 VO24]6– formulieren und bilden so weitere Glieder einer schon bekannten Reihe entsprechender Anionen mit dem VIVVV-Verhältnis 28 bis 73.
Homogeneous acidification of solutions of NH4-, Na-, or K-thiovanadates yield the crystalline salts (NH4)2V3O8·1/2 H2O, Na3V5O12·8 H2O and K3V5O12·5 H2O. The latter two can be formulated as decavanadates(IV,V), containing the anion [V8 IVV2 VO24]6– and constituting new members of a series of already known anions with ratios of VIVVV from 28 to 73.


Mit 1 Abbildung

6. Mitt.:E. Hayek undU. Pallasser, Mh. Chem.99, 2126 (1968).  相似文献   

11.
Summary A sensitive, selective and fast method for the determination of hydrogen peroxide and sulfur(IV) present in atmospheric liquid phase is described and discussed. The flow injection system used contains a specially designed electrochemical micro-cell. The necessary selectivity is achieved using an alkaline carrier flow for the oxidative determination of H2O2 and an acidic one for the bisulfite oxidation, and employing differential measurements before and after addition of catalase or sulfite oxidase, respectively. Samples of 200 l volume can be injected at a rate of 30 per hour and the electroactive species be determined in the range from millimolar level down to the detection limit of 2 · 10–8mol/l. The S(IV) present as hydroxymethanesulfonate or in form of other carbonyl adducts is determined after a previous alkalinization of the sample to liberate the sulfite. The method has been tested with rain, snow, fog and cryo-sampled atmospheric water vapor. The time resolution is adequate to follow precipitation events.
Amperometrisches Fließinjektionsverfahren zur Bestimmung von Wasserstoffperoxid und Schwefel(IV) in atmosphärischem Flüssigwasser

Dedicated to Prof. Dr. G. Tölg on the occasion of his 60th birthday  相似文献   

12.
2‐Pyridone (2‐oxo­pyrimidine) forms hydrogen‐bonded com­plexes with di­carboxyl­ic acids, the molar ratio of 2‐pyridone/di­carboxyl­ic acid being 2:1 for the complexes with oxalic acid (ethanedioic acid), 2C5H5NO·C2H2O4, (I), and trans‐β‐hydro­muconic acid (trans‐hex‐3‐enedioic acid), 2C5H5NO·C6H8O4, (II), and 1:1 for the complexes with trans‐glutaconic acid (trans‐pent‐2‐enedioic acid), C5H5NO·C5H6O4, (III), and l ‐­tartaric acid (l ‐2,3‐di­hydroxy­butane­dioic acid), C5H5NO·C4H6O6·H2O, (IV). Common features in the hydrogen‐bonding patterns were found for the centrosymmetric and non‐centrosymmetric acids, respectively. The 2‐pyridone mol­ecule takes the lactam form in these crystals.  相似文献   

13.
A poly(2‐aminophenylbenzimidazole)/gold nanoparticles (P2AB/AuNPs) coated disposable pencil graphite electrode (PGE) was fabricated as an enzyme‐free sensor for the H2O2 determination. P2AB/AuNPs and P2AB were successfully synthesized electrochemically on PGE in acetonitrile for the first time. The coatings were characterized by scanning electron microscopy, X‐ray diffraction spectroscopy, Energy‐dispersive X‐ray spectroscopy, Surface‐enhanced Raman spectroscopy, and UV‐Vis spectroscopy. AuNPs interacted with P2AB as carrier enhances the electrocatalytic activity towards reduction of H2O2. The analytical performance was evaluated in a 100 mM phosphate buffer solution at pH 6.5 by amperometry. The steady state current vs. H2O2 concentration is linear in the range of 0.06 to 100 mM (R2=0.992) with a limit of detection 3.67×10?5 M at ?0.8 V vs. SCE and no interference is caused by ascorbic acid, dopamine, uric acid, and glucose. The examination for the sensitive determination of H2O2 was conducted in commercially available hair oxidant solution. The results demonstrate that P2AB/AuNPs/PGE has potential applications as a sensing material for quantitative determination of H2O2.  相似文献   

14.
Water-soluble cadmium telluride quantum dots (CdTe QDs) capped with glutathione (GSH) display chemiluminescence (CL) emission on reaction with hydrogen peroxide (H2O2) in strongly alkaline medium. It is found that the CL is strongly enhanced on addition of formaldehyde in aqueous solution. A flow injection system was developed, and it is shown that there is good linearity between CL intensity and the concentration of formaldehyde in the 0.06–3.0 μg L?1 range. The limit of detection is as low as 10 ng L?1. The method was successfully applied to the determination of formaldehyde in indoor air after adsorption into an aqueous phase. The recoveries for the real samples range from 97 % to 102.5 %, and the relative standard deviation is <3.8 % for intra- and inter-assay precision.
Figure
Formaldehyde enhances the CL resulting from CdTe quantum dots and H2O2, and this effect is exploited in a simple and sensitive FIA method for the determination of formaldehyde.  相似文献   

15.
Li  Qian  Cheng  Kui  Weng  Wenjian  Du  Piyi  Han  Gaorong 《Mikrochimica acta》2013,180(15):1487-1493

Titanium dioxide nanorods (TNR) were grown on a titanium electrode by a hydrothermal route and further employed as a supporting matrix for the immobilization of nafion-coated horseradish peroxidase (HRP). The strong electrostatic interaction between HRP and TNR favors the adsorption of HRP and facilitates direct electron transfer on the electrode. The electrocatalytic activity towards hydrogen peroxide (H2O2) was investigated via cyclic voltammetry and amperometry. The biosensor exhibits fast response, a high sensitivity (416.9 μA·mM−1), a wide linear response range (2.5 nM to 0.46 mM), a detection limit as low as 12 nM, and a small apparent Michaelis-Menten constant (33.6 μM). The results indicate that this method is a promising technique for enzyme immobilization and for the fabrication of electrochemical biosensors.

A TiO2 nanorod film was directly grown on Ti substrate by a hydrothermal route, and was further employed for a supporting matrix to immobilize horseradish peroxidase as a biosensor electrode. The as-prepared hydrogen peroxide biosensor based on Nafion/HRP/TNR/Ti electrode exhibited fast response and excellent electrocatalytic activity toward H2O2, i.e., a high sensitivity (416.9 μA mM−1), a wide linear range (2.5 × 10−8 to 4.6 × 10−4 M) with a low detection limit (0.012 μM) and a small apparent Michaelis-Menten constant (33.6 μM).

  相似文献   

16.
The first four examples of organic‐inorganic hybrid lanthanide‐silver heterometallic frameworks, namely, [AgLn5‐C2O4)(SO4)(H2O)2] [Ln = Eu ( 1 ) and Sm ( 2 )] and [AgLn4‐C2O4)0.56‐C2O4)0.5(SO4)(H2O)] [Ln = Tb ( 3 ) and Dy ( 4 )] based on oxalate and sulfate anions were synthesized by hydrothermal reactions of lanthanide oxide, silver nitrate, oxalic acid and sulfuric acid. All structures contain ladder‐like inorganic lanthanide sulfato chains, which are further connected together through silver atoms by oxalate anions with different coordination behavior (μ5‐C2O4: 1 and 2 , μ6‐C2O4 mixed μ4‐C2O4: 3 and 4 ) to generate two types of 3D networks. The luminescent properties of these compounds were also studied.  相似文献   

17.
《Analytical letters》2012,45(8):1927-1937
Abstract

A colorimetric reaction has been studied for the detection and determination of ascorbic acid in samples at the microgram level. the method is simple, rapid, and sensitive, the ascorbic acid was detected using resin beads and determined spectrophotometrically using m-dinitrobenzene in formaldehyde. the detection limit was 10μg. Beer's law is obeyed in the concentration range of 2 – 50μg/ml of ascorbic acid.  相似文献   

18.
Reaction of formaldehyde with amino acids followed by oxidation with hydrogen peroxide to produce a fluorophore Norharman product is well known and was used for the spectrofluorimetric determination of l-tryptophan (Trp). This study aimed to use graphene oxide (GO) to enhance the selectivity and sensitivity of Trp in presence of other amino acids and possible interfering compounds. Different parameters such as pH, temperature, incubation time, and concentrations of formaldehyde, H2O2 and GO were studied to optimize the condition of determination. Experimental data showed that the maximum fluorescence intensity was achieved in pH 7.0–9.0 phosphate buffer mixed with 7–10% (v/v) formaldehyde and 1–2% (v/v) H2O2 as oxidizing agent at 60 ?C for 1 h. On the basis of calibration curve of various concentrations of Trp in the presence of 20 μg mL−1 GO, the lower limit of detection (LOD) of Trp was determined as 0.092 nmol mL−1 and the lower limit of quantification (LOQ) was 0.3 nmol mL−1. The selectivity of Trp in presence of other amino acids and possible interfering compounds were studied with and without GO. The data obtained after inner filter effect corrections revealed that the selectivity of Trp in presence of amino acids and other possible interfering agents was improved in the range of 76–96%, compared with that in absence of GO. The enhancement of selectivity in the presence of GO indicates that the Trp and other amino acid and possible interfering compounds were adsorbed by GO, and the selective uptaking of Trp-by the reaction with formaldehyde followed by oxidation with H2O2 at 60 ?C with high selectivity and sensitivity was achieved successfully.  相似文献   

19.
Using a fluorometric method with a detection limit of 5 nmol/L, here it is reported that albeit positive results were got from bovine serum albumin (BSA) and chicken ovalbumin (OVA) as published in literature, no detectable amount of hydrogen peroxide (H2O2) was generated during α-synuclein (α-Syn) aggregation in vitro even in the presence of transition metal ions Cu(Ⅱ) or Fe(Ⅲ). The results suggest that the concentration of H2O2 generated during aggregation of α-Syn in vitro be lower than 5 nmol/L beyond the detection limit of the adopted method and it is far too poor to be responsible for the cytotoxicity of α-Syn aggregates, thus allowing people to extensively elucidate the mechanism underlying neurotoxicifies of the aggregates formed by some amyloidogenic proteins.  相似文献   

20.
In this paper, the highly intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots (N-GQDs) is revealed. This activity was greatly dependent on pH, temperature and H2O2 concentration. The experimental results showed that the stable N-GQDs could be used for the detection of H2O2 and glucose over a wide range of pH and temperature, offering a simple, highly selective and sensitive approach for their colorimetric sensing. The linearity between the analyte concentration and absorption ranged from 20 to 1170 μM for H2O2 and 25 to 375 μM for glucose with a detection limit of 5.3 μM for H2O2 and 16 μM for glucose. This assay was also successfully applied to the detection of glucose concentrations in diluted serum and fruit juice samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号