共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors
F. Conzuelo V. Ruiz-Valdepeñas Montiel S. Campuzano M. Gamella R.M. Torrente-Rodríguez A.J. Reviejo J.M. Pingarrón 《Analytica chimica acta》2014
Disposable amperometric magnetosensors, involving a mixture of modified-magnetic beads (MBs), for the multiplex screening of cephalosporins (CPHs), sulfonamides (SAs) and tetracyclines (TCs) antibiotic residues in milk are reported for the first time in this work. The multiplexed detection relies on the use of a mixture of target specific modified magnetic beads (MBs) and application of direct competitive assays using horseradish peroxidase (HRP)-labeled tracers. The amperometric responses measured at −0.20 V vs. the Ag pseudo-reference electrode of screen-printed carbon electrodes (SPCE) upon the addition of H2O2 in the presence of hydroquinone (HQ) as redox mediator, were used to monitor the extent of the different affinity reactions. The developed methodology, involving a simple and short pretreatment, allowed discrimination between no contaminated UHT and raw milk samples and samples containing antibiotic residues at the maximum residue limits (MRLs). The usefulness of the multiplexed magnetosensor was demonstrated by analyzing spiked milk samples in only 5 min. The results demonstrated that a clear discrimination of milk samples contaminated with antibiotics at their MRL level or their mixtures, allowing the identification of milk not complying with current legislation. These features make the developed methodology a promising alternative in the development of user-friendly devices for on-site analysis to ensure quality control for dairy products. 相似文献
2.
In the present paper, a comparative study using Co-phthalocyanine and Prussian Blue-modified screen-printed electrodes, has been performed. Both the electrodes have demonstrated an easiness of preparation together with high sensitivity towards thicoholine (LOD = 5 × 10−7 and 5 × 10−6 M for Co-phthalocyanine and Prussian Blue, respectively) with high potentialities for pesticide measurement. Prussian Blue-modified screen-printed electrodes were then selected for successive enzyme immobilization due to their higher operative stability demonstrated in previous works. AChE and BChE enzymes were used and inhibition effect of different pesticides was studied with both the enzymes. AChE-based biosensors have demonstrated a higher sensitivity towards aldicarb (50% inhibition with 50 ppb) and carbaryl (50% inhibition with 85 ppb) while BChE biosensors have shown a higher affinity towards paraoxon (50% inhibition with 4 ppb) and chlorpyrifos-methyl oxon (50% inhibition with 1 ppb). Real samples were also tested in order to evaluate the matrix effect and recovery values comprised between 79 and 123% were obtained. 相似文献
3.
A practical approach to reduce the interferences of biochemicals and hematocrit ratio (Hct%) in the determination of whole
blood glucose using multiple screen-printed carbon electrode (SPCE) test strips is described. SPCE test strips with and without
glucose oxidase [i.e., GOD(+)-SPCEs and GOD(-)-SPCEs] were used and the chronoamperometric currents of test glucose solutions
with various spiked uric acid concentrations and Hct% were measured. By establishing the interference relationships between
glucose concentrations and uric acid concentrations as well as Hct% values and with appropriate corrections, the whole blood
glucose determinations could be made to be more accurate and comparable to those determined by the reference YSI method. Specifically,
the use of the ΔI value, i.e., the current difference between GOD(+)-SPCE and GOD(-)-SPCE measurements, would reduce most of the uric acid/biochemical
interferences. An interpolation method was also established to correct for the glucose determinations with Hct% interferences.
The Hct% corrections using the interpolation method are especially important and necessary for those blood samples with glucose
concentrations higher than 110 mg dL-1 and Hct% values lower than 35%. This approach should also be applicable to other biochemical determinations using similar
electrochemical techniques.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
Simple and low cost biosensor based on screen-printed electrode for sensitive detection of some alkylphenols was developed, by entrapment of HRP in a nanocomposite gel based on single-walled carbon nanotubes (SWCNTs) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid. Raman and FTIR spectroscopy, CV and EIS studies demonstrate the interaction between SWCNTs and ionic liquid. The nanocomposite gel, SWCNT-[BMIM][PF6] provides to the modified sensor a considerable enhanced electrocatalytic activity toward hydrogen peroxide reduction. The HRP based biosensor exhibits high sensitivity and good stability, allowing a detection of the alkylphenols at an applied potential of −0.2 V vs. Ag/AgCl, in linear range from 5.5 to 97.7 μM for 4-t-octylphenol and respectively, between 5.5 and 140 μM for 4-n-nonylphenol, with a response time of about 5 s. The detection limit was 1.1 μM for 4-t-octylphenol, and respectively 0.4 μM for 4-n-nonylphenol (S/N = 3). 相似文献
5.
E. Burestedt J. Emnéus L. Gorton G. Marko-Varga E. Domínguez F. Ortega A. Narváez H. Irth M. Lutz D. Puig D. Barceló 《Chromatographia》1995,41(3-4):207-215
Summary A fully integrated screening system for phenolic compounds was developed incorporating on-line solid phase extraction, fractionation and biosensor detection. Two different types of biosensors, solid graphite and carbon paste electrodes incorporating the enzyme tyrosinase, were compared and used in the screening system. Interfacing of the solid phase extraction and fractionation with the biosensor detection was given special attention since the biosensors were not compatible with the organic modifier used for desorption of phenols from the solid phase extraction step. The system was validated with conventional analytical techniques. Surface water samples from the Ebro river were spiked with 1,10, and 25g L–1 of catechol, phenol,p-cresol, respectively. Three out of seven samples were spiked and the correct samples were identified, containing phenols equivalent to the spiked concentrations. 相似文献
6.
The use of 3-indoxyl phosphate (3-IP) as an electrochemical substrate for ELISAs with voltammetric detection was investigated. Indirect measurements of alkaline phosphatase (AP) and horseradish peroxidase (HRP) activity in solution were carried out. Picomolar levels of both enzymes can be detected, which enables the design of electrochemical immunoassays using this substrate. The enzymatic turnover of the substrate gives indigo blue, insoluble in aqueous solutions. This product is easily converted into its soluble parent compound, indigo carmine (IC), by addition of fuming sulphuric acid to the reaction media. IC shows a reversible voltammetric peak at the formal potential of −0.15 V (versus Ag pseudo-reference electrode) when a screen-printed carbon electrode (SPCE) is used. The peak current of this process constitutes the analytical signal. Using this approach an ELISA assay to quantify pneumolysin (PLY, a toxin related to respiratory infections) was carried out using AP or HRP as enzymatic label. Calibration plots obtained are reported. 3-IP is demonstrated to be the first suitable substrate for the two most common enzyme labels used in immunoassays. 相似文献
7.
E. Burestedt J. Emnéus L. Gorton G. Marko-Varga E. Domínguez F. Ortega A. Narváez H. Irth M. Lutz D. Puig D. Barceló 《Chromatographia》1995,41(5-6):207-215
Summary A fully integrated screening system for phenolic compounds was developed incorporating on-line solid phase extraction, fractionation
and biosensor detection. Two different types of biosensors, solid graphite and carbon paste electrodes incorporating the enzyme
tyrosinase, were compared and used in the screening system. Interfacing of the solid phase extraction and fractionation with
the biosensor detection was given special attention since the biosensors were not compatible with the organic modifier used
for desorption of phenols from the solid phase extraction step. The system was validated with conventional analytical techniques.
Surface water samples from the Ebro river were spiked with 1,10, and 25 μg L−1 of catechol, phenol,p-cresol, respectively. Three out of seven samples were spiked and the correct samples were identified, containing phenols
equivalent to the spiked concentrations. 相似文献
8.
A new method consisted of a dual-channel screen-printed electrode (DSPE) efficient modified with Prussian blue and acetylcholinesterase was developed for the rapid detection of organophosphorus pesticide residues. 相似文献
9.
Gehad G. Mohamed Tamer Awad Ali A.M. Al-Sabagh Elmorsy Khaled 《Analytica chimica acta》2010,673(1):79-127
A new type of screen-printed ion-selective electrode for the determination of cetylpyridinium chloride (CPC) is presented. These new electrodes involve in situ, modified and unmodified screen-printed ion-selective electrodes for the determination of CPC. The screen-printed electrodes (SPEs) show a stable, near-Nernstian response for 1 × 10−2 to 1 × 10−6 M CPC at 25 °C over the pH range 2-8 with cationic slope 60.66 ± 1.10. The lower detection limit is found to be 8 × 10−7 M and response time of about 3 s and exhibit adequate shelf-life (6 months). The fabricated electrodes can be also successfully used in the potentiometric titration of CPC with sodium tetraphenylborate (NaTPB). The analytical performances of the SPEs are compared with those for carbon paste electrode (CPE) and polyvinyl chloride (PVC) electrodes. The method is applied for pharmaceutical preparations with a percentage recovery of 99.60% and R.S.D. = 0.53. The frequently used CPC of analytical and technical grade as well as different water samples has been successfully titrated and the results obtained agreed with those obtained with commercial electrode and standard two-phase titration method. The sensitivity of the proposed method is comparable with the official method and ability of field measurements. 相似文献
10.
Montserrat Cortina-Puig Xavier Muoz-Berbel Regis Rouillon Carole Calas-Blanchard Jean-Louis Marty 《Bioelectrochemistry (Amsterdam, Netherlands)》2009,76(1-2):76
This paper describes the development of an amperometric cytochrome c (cyt c)-based biosensor and its later application to the quantification of the scavenging capacity of antioxidants. The enzymatic biosensor was constructed by covalently co-immobilizing both cyt c and XOD on a mercaptoundecanol/mercaptoundecanoic acid (MU/MUA) mixed self-assembled monolayer (SAM)-modified screen-printed gold electrode. The applicability of this method was shown by analyzing the antioxidant capacity of pure substances, such as ascorbic acid and Trolox, and natural sources of antioxidants, particularly 5 orange juices. 相似文献
11.
The lipopolysaccharide endotoxin is the most powerful immune stimulant known and a causative agent in the clinical syndrome
known as sepsis. Sepsis is responsible for more than 100,000 deaths annually, in large part due to the lack of a rapid, reliable,
and sensitive diagnostic technique. This study describes the detection of LPS fromE. coli at concentrations as low as 10 ng/mL, in 30 s using an evanescent wave fiber-optic biosensor. Polymyxin B, covalently immobilized
onto the surface of the fiber-optic probe, selectively bound fluorescently labeled LPS. Unlabeled LPS was detected in a competitive
assay format using labeled LPS for signal generation. The competitive assay format worked in both buffer and plasma with similar
sensitivities. This method can be used with other LPS capture molecules such as antibodies, lectins, or antibiotics, to simultaneously
detect LPS and to determine the LPS serotype. The LPS assay using the fiber-optic biosensor is applicable to both clinical
and environmental testing. 相似文献
12.
Montserrat Cortina-Puig Xavier Muñoz-Berbel Carole Calas-Blanchard Jean-Louis Marty 《Talanta》2009,79(2):289-12
This paper describes the characterization and optimization of an amperometric cytochrome c (cyt c)-based sensor for the determination of the antioxidant capacity of pure substances and natural samples. The cyt c and the xanthine oxidase (XOD) enzyme were co-immobilized on the electrode using the combination of several long-chain thiols. The self-assembled monolayer (SAM) was optimized in terms of composition and ratio between thiols. The immobilization protocol for both cyt c and XOD and the SAM formation time were evaluated through electrochemical methods, such as cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA) and impedance spectroscopy (IS). Finally, the biosensor was applied to the determination of the antioxidant capacity of pure alliin and two compounds extracted from garlic bulbs. 相似文献
13.
Felipe Conzuelo María GamellaSusana Campuzano A. Julio ReviejoJosé M. Pingarrón 《Analytica chimica acta》2012
The preparation and performance of a disposable amperometric magneto-immunosensor, involving the use of a selective capture antibody immobilized on the surface of protein G-functionalized magnetic beads (ProtG-MBs) and screen-printed carbon electrodes (SPCEs), for the specific detection and quantification of tetracyclines (TCs) residues in milk is reported. A direct competitive immunoassay using a tracer with horseradish peroxidase (HRP) for the enzymatic labeling was performed. The amperometric response measured at −0.2 V vs. the silver pseudo-reference electrode of the SPCE upon the addition of H2O2 in the presence of hydroquinone (HQ) as redox mediator was used as transduction signal. The developed methodology showed very low limits of detection (in the low ppb level) for 4 tetracycline antibiotics tested in untreated milk samples, and a good selectivity against other antibiotic residues frequently detected in milk and dairy products. The usefulness of the magneto-immunosensor was demonstrated by analyzing UHT whole milk samples spiked with 44 ng mL−1 tetracycline (TC) as well as a reference milk containing a certified oxytetracycline (OTC) content. These features, together with the short analysis time (30 min), the simplicity, and easy automation and miniaturization of the required instrumentation make the developed methodology a promising alternative in the development of devices for on-site analysis. 相似文献
14.
We report a simple and rapid procedure that leads to incorporation of mediator and introduction of amine functionality onto the surface of screen-printed carbon electrodes (SPCE). The electrodes were doped with cobalt phthalocyanine (CoPc) by enhanced adsorption in a process that uses minimal amounts of this redox mediator as compared with CoPc loaded inks. The CoPc-doped SPCE showed a substantially increased sensitivity to hydrogen peroxide and thiocholine as compared to unmodified electrodes. This greatly facilitated their use as transducers for the construction of amperometric biosensors based on enzymes producing oxidizable products such as hydrogen peroxide or thiols. Immobilisation of enzymes including glucose oxidase, acetylcholinesterase and choline oxidase was achieved through their multi-contact electrostatic interaction with polyethyleneimine (PEI) which was electrodeposited on the surface of CoPc-doped electrodes in one step from ethanolic solution. The efficiency of enzyme immobilisation was shown to depend on the molecular weight of the PEI used, reaching a maximum for 25 kDa PEI. The biosensors shown sensitivity to glucose at 130 nA mM−1 (LOD 0.15 mM) and to acetylcholine at 70 nA mM−1 (LOD 0.10 mM) under +0.6 V. Detection of glucose has been demonstrated at +0.4 V with the sensitivity of 60 nA mM−1 and LOD of 0.33 mM. Possibility of the inhibition analysis of pesticides has been shown for acetylcholinesterase-based sensors. 相似文献
15.
A high sensitive portable biosensor system capable of determining the presence of neurotoxic agents in water has been developed. The system consists of (i) a screen-printed electrode with acetylcholinesterase (AChE) immobilized on it, (ii) a self-developed portable potentiostat with an analog to digital (A/D) converter and a serial interface for transferring data to a portable PC and (iii) an own designed software, developed with Lab-Windows CVI, used to record and process the measurements. The system has been developed to perform high precision amperometrical measurements with low drifts, low noise and a good reproducibility. In the configuration depicted, the percentage of AChE inhibition is proportional to the content of neurotoxic agents in a sample. This type of measurement is performed by the steady-state method from the first steady current (by a phosphate buffer solution) and the second steady current (by an enzymatic reaction produced by the addition of acetylthiocholine chloride to the solution). Validation was performed by analyzing spiked water samples containing pesticides. The design is specially suited for screening purposes, does not need sample preconcentration, is totally autonomous and suitable for the field detection of neurotoxic agents in water. 相似文献
16.
17.
A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h−1) and ease of automation. 相似文献
18.
An optical biosensor based on vegetal cells entrapped in an inorganic translucent matrix and fluorescence detection has been developed. The biosensor uses Chlorella vulgaris immobilized in a translucent support produced from sol-gel technology. The translucence of the structure enables the algal active layer to be placed directly in contact with the optical fibers for fluorescence detection. This configuration has many advantages over the use of an opaque support because no space between the optical fibers and the active layer is required to collect fluorescence. This reagentless biosensor allows determination of diuron as an anti-PSII herbicide and its long term activity is assessed. 相似文献
19.
ZnO nanoparticles (nanoZnO) were decorated on multiwalled carbon nanotubes (MWCNTs) and then the prepared nano-hybrids, nanoZnO-MWCNTs, were immobilized on the surface of a glassy carbon electrode (GCE) to fabricate nanoZnO-MWCNTs modified GCE. The prepared electrode, GCE/nanoZnO-MWCNTs, showed excellent electrocatalytic activity towards luminol electrochemiluminescence (ECL) reaction. The electrode was then further modified with lactate oxidase and Nafion to fabricate a highly sensitive ECL lactate biosensor. Two linear dynamic ranges of 0.01-10 μmol L−1 and 10-200 μmol L−1 were obtained for lactate with the correlation coefficient better than 0.9996. The detection limit (S/N = 3) was 4 nmol L−1 lactate. The relative standard deviation for repetitive measurements (n = 6) of 10 μmol L−1 lactate was 1.5%. The fabrication reproducibility for five biosensors prepared and used in different days was 7.4%. The proposed ECL lactate biosensor was used for determination of lactate in human blood plasma samples with satisfactory results. 相似文献