首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new chelating resin, 1-(2-pyridylazo)-2-naphthol (PAN) coated Amberlite XAD-1180 (AXAD-1180), was prepared and used for the preconcentration of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were pH 9.5 and 3 M HNO3, respectively. The sorption capacity of the resin was found to be 5.3 mg/g for Cd and 3.7 mg/g for Ni. The detection limits for Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) were 0.7, 10, 3.1, 29 and 0.8 μg/L, respectively. The effects of interfering ions for quantitative sorption of the metal ions were investigated. The preconcentration factors of the method were in the range of 10–30. The recoveries obtained were quantitative (≥95%). The standard reference material (GBW07605 Tea sample) was analysed for accuracy of the described method. The proposed method was successfully applied to the analysis of various water, urea fertilizer and tea samples. The article is published in the original.  相似文献   

2.
《Analytical letters》2012,45(5):997-1007
Abstract

A method was established for enrichment of trace levels of Co(II), Ni(II), Fe(II), and Cu(II) ions in aqueous solutions. These metals were quantitatively retained on an Amberlite XAD‐4 column, after complexation with di‐2‐pyridyl ketone thiosemicarbazone (DPKT). After elution with 1 M HNO3 in acetone, concentration of metals were measured by atomic absorption spectrometry. The effect of major cations of drinking and tap water samples on the sorption of metal ions also were investigated. The amount of the analyte metal ions determined after preconcentration was basically in agreement with the added amount.

The developed method was used for the determination of trace amounts of metal ions in drinking and tap water samples with good results, such as relative standart deviations below 2% (N=6) and recoveries greater than >95%.  相似文献   

3.
Uzun A  Soylak M  Elçi L 《Talanta》2001,54(1):197-202
A method for the preconcentration of Cu, Fe, Pb, Ni, Cd and Bi as their diethyldithiocarbamate chelates was proposed using a column filled with Amberlite XAD-4 resin. The retained analytes on the resin were recovered with a small volume of acetone. The metal ions in the effluent were determined by a flame atomic absorption spectrometer. Different factors including pH of sample solution, sample volume, amount of XAD-4 resin, amount of ligand, eluent volume and matrix effects for preconcentration were examined. The recoveries for the analytes under the optimum working conditions were higher than 95%. The relative standard deviations of the determinations were below 9%. The limits of detection (3 s, n=20) for analytes were found to be between 4 and 23 mug l(-1). The proposed method was applied to the analysis of some waste waters from the organized industrial region of Kayseri.  相似文献   

4.
Ramesh A  Rama Mohan K  Seshaiah K 《Talanta》2002,57(2):243-252
Preconcentration of Cd(II), Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) in saline matrices on Amberlite XAD-4 resins coated with ammonium pyrrolidine dithiocarbamate (APDC) and piperidine dithiocarbamate (pipDTC) and subsequent determination by inductively coupled plasma atomic emission spectrometry were studied. Parameters such as effect of pH, effect of HNO(3) concentration on elution of metals from resin were studied. The results show that Amberlite XAD-4 coated with APDC was more efficient in the recovery of metal ions compared with Amberlite XAD-4 coated with pipDTC, in the concentration range of 0.1-200 mug l(-1), for 1 g of Amberlite XAD-4 coated resin. The detection limits for Cd(II), Cu(II), Mn(II), Ni(II), Pb(II), Zn(II) are 0.1, 0.4, 0.3, 0.4, 0.6, 0.5 mug l(-1), respectively, for resin coated with APDC and 0.7, 1.0, 0.8, 0.9, 1.7 and 1.2 mug l(-1) for resin coated with pipDTC. The effect of diverse ions on the determination of aforesaid metals was studied. The method was applied for the determination of trace metal ions in artificial sea water and natural water samples. The results were compared with extraction AAS method.  相似文献   

5.
《Analytical letters》2012,45(5):1009-1021
Abstract

Application of morpholine dithiocarbamate (MDTC) coated Amberlite XAD‐4, for preconcentration of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II) by solid phase extraction and determination by inductively coupled plasma (ICP) atomic emission spectrometry (AES) was studied. The optimum pH values for quantitative sorption of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II), and Mn(II) were 6.5–8.0, 7.0–8.5, 6.0–8.5, 6.5–8.5, 7.5–9.0, and 8.0–8.5, respectively. The metals were desorbed with 2 mol L?1. The t1/2 values for sorption of metal ions were 2.6, 2.9, 2.5, 2.6, 3.0, and 3.8 min respectively for Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II). The effect of diverse ions on the determination of the previously named metals was studied. Simultaneous enrichment of the six metals was accomplished, and the method was applied for use in the determination of trace metal ions in seawater samples.  相似文献   

6.
The use of chemically modified XAD-4-salen chelating resin had been studied for the separative concentration of metal ions from an aqueous solution. XAD-4-salen was synthesized by diazonium coupling reaction of salen[N,N′-bis(salicylidene)ethylenediamine] and Amberlite XAD-4 resin. The distribution coefficient at various pH values and adsorption capacities were obtained with respect to Cu(II), Pb(II) and Bi(III). Trace elements were pre-concentrated on the synthesized XAD-4-salen by batch method for atomic absorption spectrometric determination. Some conditions, such as the pH of aqueous solution, amount of XAD-4-salen, kinds and concentration of acids were optimized for the analytical application of XAD-4-salen. For the pre-concentration of metal ions, the pH of the aqueous solution was adjusted to approximately 5.5, and then it was stirred 30 min after the addition of 50 mg of pulverized XAD-4-salen. The adsorbed metal ions were desorbed by 10 mL of 1.0 M HNO3. The desorption efficiency of Bi(III) was enhanced by the addition of 30 mg/L of Pd(II). The addition of Pd(II) as a matrix modifier could improve the reproducibility and sensitivity in the Atomic Absorption Spectroscopy (AAS) determination of volatile lead and bismuth. In the present study, this procedure has been applied for the determination of Cu(II), Pb(II) and Bi(III) in real samples of five kinds of river water, using a standard calibration curve method. Recoveries of 85–120% were obtained in the spiked samples in which given amount of analytes were added.  相似文献   

7.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

8.
Summary An adsorption-elution and atomic absorption spectrophotometric method using Amberlite XAD-16 is proposed for the preconcentration and determination of Cu, Ni and Zn. Optimum conditions for the preconcentration were investigated. Recoveries of the elements were found to be 82.4±0.3%, 95±3% and 71±1% for Cu, Zn and Ni, respectively, at 95% confidence level. The recoveries were increased to about 99% for Cu and Ni by complexing with 1-(2-pyridylazo)-2-naphthol (PAN). The effect of Na and K on the preconcentration of trace metals has also been investigated. The method was applied to a tap water.  相似文献   

9.
Summary The adsorption of metal chelates formed by APDC and oxine on Amberlite XAD-4 was investigated in order to determine the optimal conditions for preconcentration of trace metal ions. The investigated metal ions were Cu, Cd, Mn, Co, Pb, Ni and Fe. The recovery yields were determined by use of flame AAS. The method was applied to river waters with satisfactory results (recovery >95%; relative standard deviation 1–5%).Dedicated to Prof. Dr. B. Schrader on the occasion of his 60th birtday  相似文献   

10.
Narin I  Tuzen M  Soylak M 《Talanta》2004,63(2):411-418
A chelating resin, pyrocatechol violet (PV) immobilised on an Amberlite XAD-1180 support, was prepared and its use for the atomic absorption spectrometric determination of aluminium was investigated. The XAD-1180-PV resin was characterised by infrared spectrometry and thermal gravimetric analysis. The optimum pH value for quantitative sorption is 8-9, and desorption can be achieved by using 5.0-10.0 ml of 2 M HCl. The effects of diverse ions on the sorption and recovery of aluminium have been studied. The capacity of sorbent was 6.45±0.59 mg g−1 Al XAD-1180-PV. Recoveries for aluminium from water samples were in the range 95-105%. The accuracy of procedure was confirmed by aluminium determination in certified reference materials. The method developed was applied with varying results to the analysis of natural water, haemodialysis fluids and microwave digested red wine samples from Tokat City.  相似文献   

11.
A sensitive technique for the determination of trace Cu(II) in various samples after column preconcentration by adsorbing onto pulverized Amberlite XAD-4 loaded with N-benzoylphenylhydroxylamine (BPHA) was developed. Several experimental conditions, such as the size of XAD-4, adsorption flow rate, pH of sample solution, and so forth, were optimized. The interfering effects of diverse concomitant ions were investigated. Al(III), Fe(III), Ni(II), and Co(II) interfered, but the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BPHA resin to 0.30 g. The dynamic range, the correlation coefficient (R2), and the detection limit obtained by the proposed technique were 1.0–60, 0.9953, and 0.83 ng/mL, respectively. For validating the technique, the aqueous samples (stream water, reservoir water, and wastewater), the diluted brass sample, and the plastic sample were used as real samples. Recovery yields of 94–102% were obtained. These measured data were not different from ICP-MS data at the 95% confidence level. This method was also validated by rice flour CRM (normal, fortified) samples. Based on the results of the experiment, it has been found that the proposed technique can be applied to the determination of Cu(II) in various real samples. The text was submitted by the authors in English.  相似文献   

12.
Three major types of pre-concentration methods were evaluated and optimised for the extraction and determination of Cd, Cu, Ni, Pb and Zn from seawater samples. The traditional APDC/DDDC-Freon liquid-liquid extraction method showed excellent results for a multi-elemental analysis. However, the technique is labour consuming, very sensitive to operational conditions, employs environmentally unsafe and expensive solvents and requires large sample volumes. In the solid phase extraction method, the performances of a traditional Amberlite XAD-4 and a novel Dowex Optipore V-493 were evaluated. Application of Dowex Optipore V-493 resin provided better results at low concentrations than the generally used Amberlite XAD-4 resin using low sample volumes. However, the presence of natural organic compounds may decrease extraction efficiency of both resins for Cu. Thus, a pre-treatment with UV irradiation is advantageous for samples with high organic content. Cobalt co-precipitation methods showed good Cu and Ni recoveries, but gave poor results for Cd at low concentrations. In addition, high sample volumes are required. Both solid phase and co-precipitation methods showed unsatisfactory results in determination of Pb. Finally, a summary of methods advantages are given for choosing the most suitable method.  相似文献   

13.
We have synthesized two ditopic ligands for selective extraction of copper(II) nitrate. We also synthesized one cation-only binding analog for comparison. All three ligands were characterized by conventional techniques. Competitive two-phase metal ion solvent extraction experiments were performed at 25 °C over a period of 24 h. These ligands showed significant selectivity for Cu(II) ions, having the ditopic ligands extract 81 and 73% of the Cu(II) ions in a solution of different metal ions {Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Pb(II)} at pH 5.09. Competitive transport experiments (water/chloroform/water) were undertaken employing each ligand separately as the ionophore in the membrane (chloroform) phase. No metal ion transport was observed, but a large concentration of Cu(II) was present in the membrane phase. Competitive anion extraction and transport were carried out with the ditopic ligands, yielding selective extraction and transport of nitrate. Furthermore, a pH isotherm of the best ditopic ligand (H2L2) with Cu(II) was determined from pH 1.0 to 6.0, producing a pH½ value of approximately 2.6. Finally, crystal structures of the ditopic ligands complexed with Cu(II) were determined and refined. The coordination geometry around the metal centers are distorted square planar and the Cu(II)-donor bond lengths fall within the normal range.  相似文献   

14.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

15.
《Analytical letters》2012,45(8):575-584
Abstract

The complexations of a new ligand, o-(2-thiazolylazo)-4-ethylphenol(TAEP) with Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hq(II) and Pb(II) have been studied by potentiometric titrations, at 25.0 ± 0.2°C and an ionic strength of 0.1 in 30% v/v dioxane-water mixture. The dissociation constant and spectral data of TAEP and formation constants of the complexes containing various molar ratios of metal ion to ligand, are reported. It is observed that Ca(II) forms only an ML complex in any molar ratios, whereas other metal ions react in two steps forming ML and ML2 complexes in a 1:3 molar ratio. In the case of 1:1 and 1:2 molar ratios, Mn(II), Co(II), Cd(II) and Hg(II) seemed to form bi- or poly-nuclear complexes because of slightly different formation curves from those of 1:3 molar ratio. The sequence of the first successive formation constant is Cu > Hg > Ni > Pb > Co > Zn > Cd > Mn > Ca, showing Mellor-Maley's order. Further correlation is shown between the formation constants and the second ionization potentials of the metals.  相似文献   

16.
Guo Y  Din B  Liu Y  Chang X  Meng S  Liu J 《Talanta》2004,62(1):207-213
2-Aminoacetylthiophenol (AATP)-modified Amberlite XAD-2 has been synthesized by coupling it through NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis (TGA) and infrared (IR) spectra, was used to preconcentrate Cd, Hg, Ag, Ni, Co, Cu and Zn ions. Several parameters, such as distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and striping, volume of sample and eluent, were evaluated. The effects of electrolytes and cations on the preconcentration were also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard reference sediment material (GBW 07309 China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ag, Ni, Co, Cu and Zn in tap water, river water and sediment samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES) with satisfactory results. The 3σ detection limits for Cd, Hg, Ag, Ni, Co, Cu and Zn were found to be 0.10, 0.23, 0.41, 0.13, 0.25, 0.39 and 0.58 μg l−1, respectively. The relative standard deviation of the determination was <10%.  相似文献   

17.
Tokalioğlu S  Kartal S  Elçi L 《Annali di chimica》2002,92(11-12):1119-1126
A method was described for the determination of the elements Cr, Mn, Fe, Co, Ni, Cu, Cd, Pb, and Bi in waters by flame atomic absorption spectrometry (FAAS) after separation and preconcentration on Amberlite XAD-16 resin with sodium tetraborate using a chromatographic column. Parameters influencing the analytical performance, including pH and the volume of sample, amount of analyte and interfering effect of co-existing ions, were studied in detail. The recovery values were quantitative (> or = 95%), and the relative standard deviation (RSD) and detection limit (DL) varied in the range of 1.1-2.4% (n=10) and 0.002-0.177 microg m(-1) (3s, n=20), respectively. After being optimized, the proposed method was applied to the drinking water, waste water and artificial sea water samples. Recovery values of the elements investigated, were quantitative for tap water and synthetic sea water, except for Mn, Co and Ni (including also Cd for synthetic sea water). Recovery values of Cd, Pb, Cu and Co were found to be 95, 102, < or = 87, and < or = 83%, respectively, for the waste water samples.  相似文献   

18.
Abstract

The reaction, in water, of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with sodium ampicillinate at room temperature has allowed isolation of dimers with the following general formula [M(amp)Cl]2 × nH2O (n = 1.5?3.2). The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibilities and spectroscopic methods (IR, Raman, EPR and UV-Visible). A dinuclear structure based on octahedrally coordinated metal ions is proposed.  相似文献   

19.
Amberlite XAD-16 resin has been functionalized using nitrosonaphthol as a ligand and characterized employing elemental, thermogravimetric analysis and FT-IR spectroscopy. The sorption of Ni(II) and Cu(II) ions onto this functionalized resin is investigated and optimized with respect to the sorptive medium (pH), shaking speed and equilibration time between liquid and solid phases. The monitoring of the influence of diverse ions on the sorption of metal ions has revealed that phosphate, bicarbonate and citrate reduce the sorption up to 10–14%. The sorption data followed Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherms. The Freundlich parameters computed are 1/n = 0.56 ± 0.03 and 0.49 ± 0.05, A = 9.54 ± 1.5 and 6.0 ± 0.5 mmol g−1 for Ni(II) and Cu(II) ions, respectively. D–R isotherm yields the values of Xm = 0.87 ± 0.07 and 0.35 ± 0.05 mmol g−1 and of E = 9.5 ± 0.23 and 12.3 ± 0.6 kJ mol−1 for Ni(II) and Cu(II) ions, respectively. Langmuir characteristic constants estimated are Q = 0.082 ± 0.005 and 0.063 ± 0.003 mmol g−1, b = (4.7 ± 0.2) × 104 and (7.31 ± 0.11) × 104 l mol−1 for Ni(II) and Cu(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantities of ΔH = −58.9 ± 0.12 and −40.38 ± 0.11 kJ mol−1, ΔS = −183 ± 10 and −130 ± 8 J mol−1 K−1 and ΔG = −4.4 ± 0.09 and −2.06 ± 0.08 kJ mol−1 at 298 K for Ni(II) and Cu(II) ions, respectively. Using kinetic equations, values of intraparticle transport and of first order rate constant have been computed for both the metal ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination in tea, vegetable oil, hydrogenated oil (ghee) and palm oil by atomic absorption spectrometry using direct and standard addition methods.  相似文献   

20.
Prabhakaran D  Subramanian MS 《Talanta》2003,59(6):1227-1236
A new chelating polymeric sorbent was developed by functionalizing Amberlite XAD-16 with 1,3-dimethyl-3-aminopropan-1-ol via a simple condensation mechanism. The newly developed chelating matrix offered a high resin capacity and faster sorption kinetics for the metal ions such as Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II). Various physio-chemical parameters like pH-effect, kinetics, eluant volume and flow rate, sample breakthrough volume, matrix interference effect on the metal ion sorption have been studied. The optimum pH range for the sorption of the above mentioned metal ions were 6.0–7.5, 6.0–7.0, 8.0–8.5, 7.0–7.5, 6.5–7.5, 7.5–8.5 and 6.5–7.0, respectively. The resin capacities for Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II) were found to be 0.62, 0.23, 0.55, 0.27, 0.46, 0.21 and 0.25 mmol g−1 of the resin, respectively. The lower limit of detection was 10 ng ml−1 for Cd(II), 40 ng ml−1 for Mn(II) and Zn(II), 32 ng ml−1 for Ni(II), 25 ng ml−1 for Cu(II) and Co(II) and 20 ng ml−1 for Pb(II). A high preconcentration value of 300 in the case of Mn(II), Co(II), Ni(II), Cu(II),Cd(II) and a value of 500 and 250 for Pb(II) and Zn(II), respectively, were achieved. A recovery of >98% was obtained for all the metal ions with 4 M HCl as eluting agent except in the case of Cu(II) where in 6 M HCl was necessary. The chelating polymer showed low sorption behavior to alkali and alkaline earth metals and also to various inorganic anionic species present in saline matrix. The method was applied for metal ion determination from water samples like seawater, well water and tap water and also from green leafy vegetable, from certified multivitamin tablets and steel samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号