首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(7-8):639-657
Abstract

An automatic analyzer for the simultaneous microdetermination of carbon, hydrogen, nitrogen, and sulfur is described. The method is based on the uncatalyzed, dynamic, flash-combustion of the sample in an oxygen/helium atmosphere in a quartz tube. Separation of the combustion gases, N2, CO2, SO2, and H2O is accomplished by using gas chromatography and a thermal conductivity detector. Reactions of SO2 formation are given in detail.  相似文献   

2.
The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2/N2 and H2/CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic‐electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment.  相似文献   

3.
The aim of present project was to develop a microcosm experimental method for estimation of NOx and CO2 emission of microbial origin from cultivated soil. The effect of different factors (such as temperature, water supply, mineral-N source and organic matter addition, role of soil organisms and heavy metal contamination) that controlling the accumulation of N2O and CO2 in soil atmosphere and release to air was studied in closed microcosm laboratory model experiments. The headspace gas composition of closed glass vessels of 800-1200 cm3 containing 100-200 g brown forest soil sample was analysed. The N2O and CO2 concentration of gas samples was analysed by gas chromatographic methods and NO-content by means of chemiluminescent detection. Concerning the results, it can be stated that the applied microcosm experimental model proved to be a suitable tool for detecting the effect of factors influencing the NOx and CO2 release from agricultural soil. The temporal changes of N2O and CO2 concentration demonstrated the impact of the coupled microbial processes resulting in these greenhouse gases. The gas production depended on the soil moisture level, temperature and C/N ratio significantly. The inhibitory effect of toxic heavy metals (e.g. Cd) could also be affected by the C/N ratio. The appearance of NO as an intermediate of microbial processes was observed as well.  相似文献   

4.
The effect of ambient gas on measurements with microwave-assisted laser-induced plasma in microwave-assisted laser-induced breakdown spectroscopy (MA-LIBS) was studied with relevance for the analysis of nuclear fuel. A pelletized gadolinium oxide (Gd2O3) sample, which was used as a simulated nuclear fuel, was irradiated by a pulsed Nd:YAG laser (532 nm, 5 mJ) coupled with microwaves (2.45 GHz, 400 W) under various gases of air, Ar, and He. Microwaves can be effectively used to enhance laser-induced plasma emissions. The emission spectrums of Gd obtained by MA-LIBS in Ar and He gases are much better than those of the air case. Namely, the spectral lines can be clearly identified and are far from molecular bands. Furthermore, the emission intensity is highest with low background emissions. Linear calibration curves of Ca in the concentration range between 0 and 500 mg/kg as an impurity in Gd2O3 have been successfully obtained in all gases. The detection limits of Ca impurity in air, Ar and He gases were 2, 0.8 and 0.6 mg/kg, respectively, which are much lower than the required limits of Ca impurity in nuclear fuels.  相似文献   

5.
Capture of CO2 from flue gases produced by the combustion of fossil fuels and biomass in air is referred to as post-combustion capture. Chemisorbent processes are considered to be the most feasible method and are already at an advanced stage of development, but gas separation membranes are attracting more and more attention as a possible alternative. This paper describes a detailed parametric study of mass and energy balances for a simulated single membrane process. Typical operating conditions (CO2 concentration in the flue gas, pressure and temperature, etc.) together with the influence of the membrane quality (permeability, selectivity) and membrane area on membrane performance (CO2 separation degree and CO2 purity) are simulated over a wide range of parameters.  相似文献   

6.
Gases released during the conversion of NH4Zr2(PO4)3 to HZr2(PO4)3 were identified using an apparatus in which gases released from a sample placed in a thermogravimetric analyzer were directly introduced to a gas cell of an IR spectrometer. Such acidic gases as N2O and NO were detected besides the basic NH3 gas, and their formation mechanism was discussed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
《Analytical letters》2012,45(5):305-314
Abstract

Several experimental parameters have been found to affect the intensity of microwave excited electrodeless discharge emission at the cadmium resonance line (228.8 nm.). A thorough study of the effect of pressure of the fill gas, microwave power applied to the tube; and weight of Cd introduced into the tube has been accomplished. Direct comparisons of Cd resonance emission for the cases of He, Ne, Ar and air fill gases are presented. From these studies preductions of optimum conditions for construction and operation of Cd electrodeless discharge lamps may be made.  相似文献   

8.
Summary A new method has been developed for the quantitative determination of gas mixture composition where air penetration during gas sample collection would lead to erroneous results. It requires the use of a stationary phase that separates gas sample components and the air and involves 4–5 analyses of samples of equal volumes containing different amounts of air. By graphical extrapolation of the air peak area (S air ) as a function of the peak areas of the individual components (S comp ) the areas for these components in the absence of air can be obtained forS air =0. Using calibration curves for the pure gas components the true quantitative composition of the gas mixture is estimated.  相似文献   

9.
王煜  陈静  廖清  孙伟  厉建龙  张建平  吴凯 《物理化学学报》2012,28(10):2500-2506
综合利用化学气相沉积、铝热反应法、汽-液-固生长法、极性面融合和稳态湍流动力学控制来大量制备双股类螺旋Zn2SnO4单晶纳米带. 该材料属于面心立方尖晶石型透明半导体, 在光伏器件和湿度与可燃气体传感器中有着广泛的应用. 扫描电镜、透射电镜、电子衍射、X射线衍射、拉曼光谱以及光发射等技术分析表明所得的双股类螺旋纳米带是由两个独立的Zn2SnO4纳米带通过扭曲纠缠和融合而成. 该双股类螺旋纳米带实际上是在轴向具有周期性的超晶格材料. 光致发光测量表明该纳米带在326.1 nm处出现强发射峰, 线宽约为1.5nm. 本研究所采用的综合制备法中的铝热反应法和稳态湍流微扰法可能有助于类似材料的控制制备.  相似文献   

10.
Networks of different carbon nanotube (CNT) materials were investigated as resistive gas sensors for NO2 detection. Sensor films were fabricated by airbrushing dispersions of double-walled and multi-walled CNTs (DWNTs and MWNTs, respectively) on alumina substrates. Sensors were characterized by resistance measurements from 25 to 250 °C in air atmosphere in order to find the optimum detection temperature. Our results indicate that CNT networks were sensitive to NO2 concentrations as low as 0.1 ppm. All tested sensors provided significantly lower response to interfering gases such as H2, NH3, toluene and octane. We demonstrate that the measured sensitivity upon exposure to NO2 strongly depends on the employed CNT material. The highest sensitivity values were obtained at temperatures ranging between 100 and 200 °C. The best sensor performance, in terms of recovery time, was however achieved at 250 °C. Issues related to the gas detection mechanisms, as well as to CNT network thermal stability in detection experiments performed in air at high operation temperatures are also discussed.  相似文献   

11.
ABSTRACT

Production and consumption of methane (CH4) and nitrous oxide (N2O) in soils have a strong influence on global greenhouse gases (GHG) budgets. Therefore, it is crucial to precisely measure GHG fluxes at the soil–atmosphere interface. In upland soils, CH4 and N2O can be consumed by microbiological processes, and the respective concentrations can be lower than in the atmosphere, demanding highly sensitive gas analysing systems. Traditionally, soil air is sampled in vials and analysed in the laboratory by gas chromatography (GC). During the last decade, different technologies have been developed that allowed to build portable gas analysers that are able to measure sub-ambient gas concentration directly in the field. Here, we compared sub-ambient to ambient CH4 and N2O concentration values from four portable devices using different measurement technologies (a portable GHG analyser based on laser absorption spectroscopy [LAS], two portable Fourier transform infrared spectroscopy [FTIR] devices and a field gas analyser using photoacoustic spectroscopy [PAS]) to traditional GC analysis in the laboratory (a GC system equipped with a flame ionisation detector [GC-FID] and an electron capture detector [GC-ECD]). The accuracy and precision of photoacoustic spectroscopy measurements are strongly influenced by the water vapour content and non-target gases in the sampling air. We used an advanced set-up for a widely used PAS analyser enabling N2O measurements at sub-ambient concentrations with similar precision and accuracy as the GC-ECD system. Measurements of CH4 and N2O by FTIR and LAS devices were in good agreement with the GC systems. We conclude that the portable devices are suitable for studies of GHG fluxes in the field. Thanks to their universal and portable character, LAS, PAS and FTIR devices represent useful alternatives to currently used technologies for field studies.  相似文献   

12.
The oxidation of xylene and its irradiation byproducts in air using TiO2 was studied under electron beam (EB) irradiation for the purification of ventilation gases emitted from paint factories. EB irradiation experiments were mainly performed under two different conditions: a TiO2 pellet layer was placed in an irradiation or a non-irradiation space. The results revealed that xylene was decomposed and CO was formed in the gas phase of the irradiation space irrespective of the presence of TiO2 pellets, while CO2 was produced in the gas phase of the irradiation space and on the surface of TiO2 pellets. The total CO2 concentration increased when the pellet layer was in the non-irradiation space. On the other hand, the concentration of CO2 produced on the surface of the TiO2 pellets in the irradiation space was higher than that in a non-irradiation space.  相似文献   

13.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas.  相似文献   

14.
Potentiometric in situ gas probes with solid electrolytes were described for the first time 50 years ago. It is the intention of the present communication to give some additions on oxygen sensors in reducing gases which have been neglected in a recent review (J Solid State Electrochem, 13:3, 2009). Today, the most frequently used solid electrolyte gas sensors are the lambda probes. In their electrodes is a very quick change between gas phases with excess of oxygen and excess of components of reducing gases. Changes in the interpretation of the mechanism of the interaction between gas and solid electrolyte in the gas sensors are discussed. At low temperatures, mixed potentials appear which have to be expected at oxygen electrodes also with air and technical oxygen, if these gases are not cleaned particularly. Among the CO2 sensors, the system with the reference electrode SiO2, Na2Si2O5 on ß-alumina must be mentioned. This system has special advantages and in the commercially available device it reaches excellent long-term stability. A report about long-term measurements of SO2 traces in air is worth mentioning. For measurements of SO2 in industrial gases, Westinghouse has offered a complicated system in the 1980s.  相似文献   

15.
The partial molar volume of a gas that is dissolved at high dilution in a solvent is required to express the influence of pressure on Henry's constant as well as to describe the volume change (expansion) of the liquid caused by the dissolved gas. The correlations of recently published experimental results for the solubility of some selected gases (CO2, Xe, CH4, CF4, H2, CO, O2) in three imidazolium-based ionic liquids (1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-n-butyl-3-methylimidazolium methyl sulfate ([bmim][CH3SO4]), and 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N])) determined by the synthetic method were re-evaluated by also considering the experimentally determined volumetric properties. The new evaluation does not change the published results for Henry's constants, but additionally yields reliable information on the partial molar volume of those gases in the mentioned ionic liquids at temperatures from about 293 to 413 K.  相似文献   

16.
Detecting the characteristic decomposition products (SO2, SOF2, and HF) of SF6 is an effective way to diagnose the electric discharge in SF6-insulated equipment. Based on first-principles calculations, Au, Ag, and Cu were chosen as the surface modification transition metal to improve the adsorption and gas-sensing properties of MoTe2 monolayer towards SO2, SOF2, and HF gases. The results show that Au, Ag, and Cu atoms tend to be trapped by TH sites on the MoTe2 monolayer, and the binding strength increases in the order of Ag < Au < Cu. In gas adsorption, the moderate adsorption energy provides the basis that the TM-MoTe2 monolayer can be used as gas-sensing material for SO2, SOF2, and HF. The conductivity of the adsorption system changes significantly. The conductivity decreases upon gases adsorption on TM-MoTe2 monolayer, except the conductivity of Ag-MoTe2 monolayer increases after interacting with SOF2 gas.  相似文献   

17.
An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L−1 and 2.4 nL L−1 for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L−1 and 30 nL L−1 for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.  相似文献   

18.
Xia  J. F.  Gao  X. X.  Kong  J. Y.  Hui  H. X.  Cui  M.  Yan  K. P. 《Plasma Chemistry and Plasma Processing》2000,20(2):225-233
NOx are main toxic by-products in the effluent gas whendecomposing volatile organic compounds in air by a packed-bed plasmareactor. Several types of materials such as 13X zeolite, BaTiO3and Pd/Pt catalysts have been selected to be packed in the reactor, andmethane decomposition and NOx by-products in discharged gases areinvestigated at different range of reaction temperature and dischargeenergy density at atmospheric pressure. The ratios of methane decompositionpercentage/NOx concentration are used to assess these packed bedmaterials and reaction conditions. The results show that usingPd/-Al2O3 with lower percentage Pd as packedbed, and discharging with lower discharge density at higher reactiontemperature can reduce NOx output effectively and greatly improveperformance of the reactor.  相似文献   

19.
The behavior of molecules in different atmospheric microwave-induced plasmas (MIPs) has been studied by means of optical emission spectroscopy. This is in order to obtain more insight into molecular processes in plasmas and to investigate the feasibility of emission spectroscopy for the analysis of molecular compounds in gases, e.g. flue gases. Various molecular species (i.e. N2, CO2, H2O, SF6 and SO2) have been introduced into discharges in argon or in molecular gases such as carbon dioxide or nitrogen. The plasmas were created and sustained by a guide-surfatron or a torch in the power range of 150 W to 2 kW. Only nitrogen sometimes yielded observable emission from the non-dissociated molecule (first and second positive system). Using other molecular gases, only dissociation and association products were observed (i.e. atomic species and diatomic molecules such as CN, C2, CO, OH, NH and N2+). The intensities of these products have been studied as a function of the concentration of introduced molecules, the position in the plasma and the composition of the plasma environment. Since in most cases the same diatomic association products are seen, observed associated molecules can only to some extend be related to the molecules originally present in the plasma gas. Therefore, it will be difficult to use atmospheric microwave discharges for the analysis of gas mixtures under the experimental conditions studied.  相似文献   

20.
仇立干  王茂元 《化学学报》2010,68(3):276-282
用高温固相反应法合成了非化学计量组成的Ba1.03Ce0.5Zr0.4La0.1O3-α质子导体. 粉末X射线衍射(XRD)结果表明, 该材料为单一钙钛矿型BaCeO3斜方晶结构, 在高温下、CO2或水蒸气气氛中具有较高的稳定性. 扫描电子显微镜(SEM)观察分析表明, 材料经1550 ℃烧结20 h非常致密. 在500~900 ℃温度范围内, 用交流阻抗谱技术测定了材料在湿润氢气和湿润空气气氛中的电导率; 用气体浓差电池方法测定了材料在湿润氢气、湿润空气气氛中和氢-空气燃料电池条件下的离子迁移数, 研究了材料的离子导电特性, 并与化学计量组成的BaCe0.5Zr0.4La0.1O3-α材料进行了比较. 结果表明, 在500~900 ℃温度范围内、湿润氢气气氛中, Ba1.03Ce0.5Zr0.4La0.1O3-α材料的质子迁移数为1, 是一个纯质子导体. 在湿润空气气氛中, 材料的氧离子迁移数为0.688~0.170, 质子迁移数为0.218~0.017, 是一个氧离子、质子和电子空穴的混合导体. 在氢-空气燃料电池条件下, 材料的离子(氧离子+质子)迁移数为0.990~0.796, 是一个氧离子、质子和电子的混合导体. 与化学计量组成的BaCe0.5Zr0.4La0.1O3-α材料相比较, 在相同实验条件下非化学计量组成的Ba1.03Ce0.5Zr0.4La0.1O3-α材料具有较高的电导率和离子迁移数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号