首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of groundwater and soil were collected from test pits placed 25 m intervals on five axes extending from an earthen waste disposal pit for produced water near the San Juan River of northwest New Mexico. Samples were obtained at depths of 1.2 to 1.5 m and were analyzed using GC and GC/MS techniques for purgable hydrocarbons, including benzenes, and for solvent extractable organic compounds. Water samples from test pits down-gradient from the disposal pit contained purgable and extractable hydrocarbons that were similar to contents of the waste disposal pit. In contrast, water samples obtained from test pits up-gradient from the waste pit were free of detectable organic components. Major purgable components in the waste pit and in surrounding groundwater included saturated/unsaturated hydrocarbons and aromatic/alkylated aromatic hydrocarbons. Samples collected 25 m from the waste pit contained concentrations of all compounds greater than in samples taken at 50 m in distance on the same exis. Total concentration of purgable aromatic hydrocarbons in groundwater from test plots ranged from a high of 200 ppb at 25 m, to a low of 12 ppb at 50 m on an axis through the plume center.  相似文献   

2.
Summary On-line solid-phase extraction (SPE) coupled with reversed-phase liquid chromatography and UV detection at 254 nm has been used for the determination of trace-level polycyclic aromatic hydrocarbons (PAH) in soil extracts. Five commercially available adsorbents (C8, C18, PLRP-S, PRP-1, and Bond-Elut Env) were evaluated. Results showed that recovery of the PAH decreased with increasing molecular weight, because of their poorer solubility. Recovery of high-molecular-weight PAH was significantly improved by addition of 10% (v/v) acetonitrile to the sample before loading of the SPE adsorbent. PAH recovery ranged from 64.0 to 108% when a 50 mL sample spiked with 1 μg L−1 was applied to these adsorbents. Determination of PAH was possible with detection limits below 0.05 μg L−1, which corresponds to 0.2 μg kg−1 soil. The method was successfully used to determine PAH in soil extracts.  相似文献   

3.
The present study describes the use of a simple solid-phase extraction procedure for the extraction of arsenic-containing hydrocarbons from fish oil followed by analysis using gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICPMS). The procedure permitted the analysis of a small sample amount, and the method was applied on a range of different commercial fish oils, including oils of anchovy (Engraulis ringens), Atlantic herring (Clupea harengus), sand eel (Ammodytes marinus), blue whiting (Micromesistius poutassou) and a commercial mixed fish oil (mix of oils of Atlantic herring, Atlantic cod (Gadus morhua) and saithe (Pollachius virens)). Total arsenic concentrations in the fish oils and in the extracts of the fish oils were determined by microwave-assisted acid digestion and ICPMS. The arsenic concentrations in the fish oils ranged from 5.9 to 8.7 mg kg?1. Three dominant arsenic-containing hydrocarbons in addition to one minor unidentified compound were detected in all the oils using GC-ICPMS. The molecular structures of the arsenic-containing hydrocarbons, dimethylarsinoyl hydrocarbons (C17H38AsO, C19H42AsO, C23H38AsO), were verified using GC coupled to tandem mass spectrometry (MS/MS), and the accurate masses of the compounds were verified using quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, total arsenic and the arsenic-containing hydrocarbons were studied in decontaminated and in non-decontaminated fish oils, where a reduced arsenic concentration was seen in the decontaminated fish oils. This provided an insight to how a decontamination procedure originally ascribed for the removal of persistent organic pollutants affects the level of arsenolipids present in fish oils.  相似文献   

4.
The bituminous rocks of the Upper Cretaceous in the Moroccan Rif have been assessed and characterized in detail using organic geochemical techniques and a variety of organic geochemical parameters. The organic matter from 4 sites was studied in order to determine its thermal maturity and its depositional environments. The organic extracts (bitumens) were fractionated on silica-potassium hydroxide column according to the aliphatic hydrocarbons, acid compounds and polar compounds. Aliphatic hydrocarbons were identified by gas chromatography and mass spectrometry (GC/MS).The distribution of the aliphatic hydrocarbon fractions, and the various organic geochemical parameters (pristane/phytane, isoprenoids/n-alkanes, CPI, C27:C28:C29 regular, C2920S/(20S+20R), C29ββ/(ββ+αα), C29/C30 hopanes and Ts/Tm) showed that the studied samples were generally mature. Two of the 4 samples appeared to be derived from source rocks deposited under anoxic conditions while suboxic to oxic conditions seemed to have been dominant for the remaining two samples. Rock–Eval pyrolysis data in addition to GC results suggested types II, III and IV kerogens for the studied samples.  相似文献   

5.
A gas chromatographic (GC) method for the determination of petroleum hydrocarbons (PH) in the boiling range from 175°C to 525°C (C10?C40 alkane) in soil was evaluated. The extraction was carried out using minimal amounts of acetone and heptane, prior to a clean up with silica gel. The extraction procedure was tested by means of standard solutions of petroleum products and soil samples. The clean up procedure did not have any significant effect on the amounts of petroleum hydrocarbons present and hydrocarbons of natural origin were removed effectively. The recovery of the extraction and clean up procedure for petroleum products in soil was greater than 90%. The standard deviation for the repeatability was estimated to be less than 10% based on multiple analyses of homogenized soil samples. The detection limit for soil was determined to be 10 mg/kg dry matter. Comparing the GC method with the widely used infrared spectrometry (IR) method in combination with a Soxhlet-extraction using Freon-113, the results obtained are equivalent.  相似文献   

6.
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important. Previously, we found that NbOx species played a key role in the activation and cleavage of C–O bonds in lignin and its model compounds. In this study, commercial niobic acid (HY-340), niobium phosphate (NbPO-CBMM) and lab-made layered niobium oxide (Nb2O5-Layer) were chosen as supports to study the effect of Brönsted and Lewis acids on the activation of C–O bonds in lignin conversion. A variety of Ru-loaded, Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol. The results show that all the Ru/Nb-based catalysts produce high mole yields of C7–C9 hydrocarbons (82.3–99.1%). What's more, Ru/Nb2O5-Layer affords the best mole yield of C7–C9 hydrocarbons and selectivity for C7–C9 aromatic hydrocarbons, of up to 99.1% and 88.0%, respectively. Moreover, it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C–O bond of phenols. Additionally, the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons. A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons.  相似文献   

7.
Oxalate in soils may enhance phosphate availability, promote mineral dissolution, and increase the mobility of aluminium and heavy metal cations by complexation. Rhubarb (Rheum rhaponticum L.) has very high content of oxalate in leaves and petioles, and therefore the topsoil under rhubarb might have elevated contents of oxalate. Soil samples were collected at depths of 0–2.5 and 2.5–5?cm from 10?cm sections along 100?cm transects from rhubarb plants at four locations in Denmark, and from seven layers in a soil profile to 80?cm depth at one location. Oxalate was extracted from the soil with 0.2?M phosphate at pH 2 by reciprocal shaking for 24?h and then determined by a new fast capillary zone electrophoresis method with 300?mM KH2PO4 and 0.30?mM TTAB electrolyte adjusted to pH 7, developed and tested to analyse high-ionic-strength soil extracts. Rhubarb increases the oxalate content in soil under the leaves slightly. The average content of oxalate in the upper 0–5?cm soil was 444?µmol/kg at the Kaldred site, and 111–333?µmol/kg at the three other locations. In the soil profile, the content of oxalate decreased from 500?µmol/kg in 0–5?cm depth to 110?µmol/kg at 75–80?cm depth. No significant seasonal changes in oxalate contents were observed, while an annual variation of 100?µmol/kg could be observed at 0–2.5?cm depth. During plant decay in autumn, a slight increase in oxalate content was observed at 30?cm soil depth. In conclusion, the role of oxalate in weathering and metal transport appears to be limited in soils under rhubarb. Oxalate might stimulate microbiological growth and phosphate mobilisation in the rhizosphere, but concentrations observed are too low to impose any toxic effects to organisms.  相似文献   

8.
Homogeneous Fenton reaction (H2O2/Fe2+ system) using significantly substoichiometric concentrations of H2O2 oxidant to oxidize phenol was characterized focusing on the formation of stable aromatic intermediates. Beyond the most abundant benzenediols, the pattern of aromatic intermediates was chiefly characterized by hydroxylated biphenyls and diphenyl ethers with different degrees of hydroxylation. Hydroxylated dibenzofurans (DBF), p,p′-dioxins, as well as highly condensed aromatic intermediates including polyols of polycyclic aromatic hydrocarbons (PAHs), could also be detected, but in lower concentrations. The formation of aromatic intermediates could be predicted on the basis of oxidative coupling reactions of resonance-stabilized radicals generated by the attack of the highly reactive hydroxyl radicals (OH*) on phenol. GC/MS identification of oxidative coupling intermediates was performed after derivatization of the solvent extracts. Derivatization reactions included silylation to give TMS (trimethylsilyl) ethers, as well as single-step extractive acetylation using acetic anhydride in alkaline aqueous solutions (pH 10.5) to give acetates. Solvent extraction of aqueous solutions, a prerequisite to generate TMS ethers, caused strong discrimination of polyols due to their low distribution coefficients in non-polar solvents. This discrimination could be overcome by extracting the in-situ formed acetates of the intermediates. Extractive acetylation allowed the detection of tri-, tetra-, and penta-hydroxylated aromatic intermediates generated by Fenton oxidation processes, which have been overlooked upto now. Thus, extractive acetylation to detect stable aromatic intermediates covering a wide range of hydroxylation degrees can foster the understanding, monitoring, and management of advanced oxidation processes, especially in the field of wastewater treatment.  相似文献   

9.
A simple and rapid solid‐phase microextraction approach for the isolation of polycyclic aromatic sulfur heterocycles from the aromatic fraction of crude oil is described. 8‐Hydroxyquinoline silica gel impregnated with palladium chloride was used as a sorbent material for extraction. Operational parameters of the extraction solvents have been evaluated and optimized. Benzothiophene, dibenzothiophene, and benzo[b]naphtho[1,2‐d]thiophene and their C1–C4 alkyl derivatives were identified and quantified by GC–MS. Under optimum conditions, the limits of detection for benzothiophene, dibenzothiophene, and benzo[b]naphtho[1,2‐d]thiophene were 0.277, 0.193, and 0.597 μg/g oil, respectively. The recoveries for the polycyclic aromatic sulfur heterocycles ranged from 81.5 to 92.1%, and the linear dynamic range was from 10 to 1000 ng/mL. The developed methodology was tested in the characterization of crude oil samples collected at the DY, SZ, ZH, and HC petroleum oil fields of the Bohai Sea. The results proved that SPE coupled with GC–MS is a promising tool for the quantitative analysis of polycyclic aromatic sulfur heterocycles in crude oils, especially for oil samples with low concentrations of polycyclic aromatic sulfur heterocycles.  相似文献   

10.
The combustion of fossil fuels forms polycyclic aromatic hydrocarbons (PAHs) composed of five‐ and six‐ membered aromatic rings, such as indene (C9H8), which are carcinogenic, mutagenic, and deleterious to the environment. Indene, the simplest PAH with single five‐ and six‐membered rings, has been predicted theoretically to be formed through the reaction of benzyl radicals with acetylene. Benzyl radicals are found in significant concentrations in combustion flames, owing to their highly stable aromatic and resonantly stabilized free‐radical character. We provide compelling experimental evidence that indene is synthesized through the reaction of the benzyl radical (C7H7) with acetylene (C2H2) under combustion‐like conditions at 600 K. The mechanism involves an initial addition step followed by cyclization and aromatization through atomic hydrogen loss. This reaction was found to form the indene isomer exclusively, which, in conjunction with the high concentrations of benzyl and acetylene in combustion environments, indicates that this pathway is the predominant route to synthesize the prototypical five‐ and six‐membered PAH.  相似文献   

11.
Summary A packed column containing immobilized SE-54 liquid phase on pellicular silica beads ZIPAX and having a high efficiency and high mass transfer rate has been successfully used in a two-dimensional packed+capillary column system without a cold trap. The application of this system is demonstrated by the analysis of C6-C8 aromatic hydrocarbons and lowboiling hydrocarbons present in natural oils, and of highboiling components present in low concentrations in a low-boiling solvent.  相似文献   

12.
A comparison has been made between two cryogenic preconcentration - high resolution gas chromatography techniques for the analysis of non-methane hydrocarbons in ambient air, one involving treatment of air samples with magnesium perchlorate to remove water, the other involving analysis without treatment. Recoveries of C1-, C2-, and C3-substituted benzenes in treated samples were 80%, 50%, and 50%, respectively. Incomplete recovery of C7-C9 n-1-olefins was also observed. C2-C8 hydrocarbons and C2-C6 n-1-olefins were recovered with greater than 90% efficiency. Analyses of certified audit samples containing a mixture of C2-C8 aliphatic and aromatic hydrocarbons at the 20 ppbv level in humidified zero-grade air indicated that the accuracy of the technique for untreated air samples was approximately 90%. The use of magnesium perchlorate for water removal cannot be recommended for the analysis of non-methane hydrocarbons in ambient air.  相似文献   

13.
In the present work, we show a novel application of pristine and functionalized Multi-Walled Carbon Nanotubes (MWCNTs) as stationary phase in low-cost packed columns for the gas chromatographic separation of alkanes and aromatic hydrocarbons. The MWCNTs were deeply investigated by means of physical and chemical methods, like thermal analysis, IR and atomic force microscopy, and Inverse Gas Chromatography (IGC) in order to correlate the adsorption process and surface properties with the material purity level and functionalization degree. The derivatization process of the pristine nanotubes was a key factor to achieve a successful separation of both the light n-alkanes (C3–C5) and the related isomers (C4–C5 branched alkanes). Satisfactory results were similarly obtained in the case of separation of aromatic hydrocarbons (BTX).  相似文献   

14.
Soot particles characteristics were investigated numerically for high temperature oxidation of C2H4/O2/N2 (C/O ratio of 2.2) in a closed jet-stirred/plug-flow reactor (JSR/PFR) system. Based on the growth mechanism of polycyclic aromatic hydrocarbons (PAHs), two mechanisms were used to explore the formation pathways of soot precursors and soot. Numerical results were compared with the experimental and reference data. The simulation results show that the value predicted for small molecule intermediates within A1 gives a strong regularity, consistent trend with reference data. However, with the hydrogen-abstraction-carbon-addition (HACA) growth mechanism, the predicted value for beyond-A1 PAH macromolecules and soot volume fraction are smaller than the experimental data. The results also show that the predicted soot volume fraction is in good agreement with experimental data when a combination of the HACA and PAHs condensation (HACA + PAH-PAH) growth mechanisms is used. Analyses of the A1 sensitivity and reaction pathway elucidated that A1 are mainly formed from C2H3, C2H2, C3H3, C6H5OH, A1C2H and A1-. The reaction 2C3H3 → A1 is the dominant route of benzene formation. The prediction results and an analysis of the A3 reaction pathway indicate that the growth process from benzene to larger aromatic hydrocarbons (beyond two-ring polycyclic aromatic hydrocarbons [PAHs]) goes by two pathways, i.e., HACA combined with the PAH-PAH radical recombination and addition reaction growth mechanisms.  相似文献   

15.
Among various polycyclic aromatic hydrocarbons, C6−C5−C6−C7−C6 fused pentacyclic aromatic hydrocarbons have the unique potential to adopt quinonoid, zwitterion, singlet, or triplet biradical electronic configurations. Two such hybrid structures between pentacene and azulene were synthesized and their ground state electronic configurations were deduced from the reactivity patterns they exhibit respectively. Compound 6 , where the radicaloid carbons are linked through a para-phenylene, forms a head-to-head dimer like a singlet biradical. In contrast, isomer 7 , where the para-linkage was switched to meta, reacts readily with oxygen which resembles the reactivity of a triplet state. The oxidized intermediate(s) then undergoes rearrangement to furnish the C6−C5−C6−C6−C6 ring contraction product 13 . Cation 14 , the protonated form of 7 , was synthesized, which implies 7 also reacts like a zwitterion. It was revealed the oxidative rearrangement takes place even with mesityl dibenzotropylium cation despite its perceived aromaticity. DFT calculations confirm the most stable forms of 6 and 7 are singlet and triplet diradical, which is consistent with the observed reactivity of respective molecules.  相似文献   

16.
Steam distillation (SD), simultaneous distillation-solvent extraction (SDE), microwave-assisted solvent extraction (MWE), and supercritical (CO2) extraction (SFE) were used to isolate secondary metabolites from Lepechinia schiedeana. The various extracts were analyzed by capillary gas-chromatography, on poly (dimethylsiloxane) (DB-1) and poly(ethyleneglycol) (INNOWAX), 60 m columns, using FID or MSD (EI, 70 eV). Kováts indexes, mass spectra, or standard compounds were employed for compound identification. 43, 61, 67, and 79 compounds at concentrations above 0.01% were detected in the SD, SDE, MWE, and SFE extracts, respectively. Ledol, C15H26O, was the major constituent (20.04–36.87%) in all extracts. Oxygenated sesquiterpenes (24.36–43.14%), C10H16, monoterpenes (27.70–39.87%), and C15H24, sesquiterpenes (10.04–22.22%) were the main groups of compounds present in SD, SDE, MWE, and SFE extracts. Heavy hydrocarbons (Cn > 15), diterpenoids, and phytosterols were found only in MWE and SFE extracts. The antioxidant activity of Lepechinia schiedeana was measured by the HRGC quantification of the volatile carbonyl compounds, final products of lipoxidation, released in a model lipid system (sunflower oil) by the effect of the Fenton reagent. The concentration of volatile carbonyl compounds decreased by 65% when lipid oxidation was induced in the presence of macerated Lepechinia plant. The protection of polyunsaturated acids in sunflower oil was also studied by measuring their concentrations after heating of the oil (180°C, 2 h) with and without macerated Lepechinia plant.  相似文献   

17.
A zero-dimensional model (perfectly-stirred reactor) in conjunction with CHEMKIN II and a scheme resulting from the merging of validated kinetic schemes for the oxidation of benzene were used to investigate the effect of hydrogen addition on the formation-depletion of C2H2, which is known as a soot precursor. The current modeling study treats the dependence of acetylene amounts on hydrogen percentage in the fuel mixture, and defines the key reaction mechanisms responsible for the observed reduction in C2H2 and consequently in polycyclic aromatic hydrocarbons and soot amounts induced by the hydrogen additive. The main objective of this work was to obtain fundamental understanding of the mechanisms, through which the hydrogen affects the acetylene yields. It was found that, at high temperatures hydrogen/benzene fuel mixtures displayed lower acetylene concentrations compared to the pure benzene fuel, whereas opposite trends were observed at low reaction temperatures.  相似文献   

18.
Ethane oxidation in jet-stirred reactor has recently been investigated at high temperature (800–1200 K) in the pressure range 1–10 atm and molecular species (H2, CO, CO2, CH4, C2H2, C2H4, C2H6) concentration profiles were obtained by probe sampling and GC analysis. Ethane oxidation was modeled using a comprehensive kinetic reaction mechanism including the most recent findings concerning the kinetics of the reactions involved in the oxidation of C1? C4 hydrocarbons. The proposed mechanism is able to reproduce experimental data obtained in our high-pressure jet stirred reactor and ignition delay times measured in shock tube in the pressure range 1–13 atm, for temperatures extending from 800 to 2000 K and equivalence ratios of 0.1 to 2. It is also able to reproduce atoms concentrations (H,O) measured in shock tube at ≈2 atm. The same detailed kinetic mechanism can also be used to model the oxidation of methane, ethylene, propyne, and allene in similar conditions.  相似文献   

19.
Aqueous matrices from Antarctica were analysed for three volatile chlorinated hydrocarbons (VCHCs): tetrachloromethane (CCl4), trichloroethylene (C2HCl3) and tetrachloroethylene (C2Cl4). The matrices analysed were snow from Rennick Nèvè and Rennick Glacier sampled during the Italian Expeditions of 1995/96 and 1996/97, respectively, and seawater, pack ice, sea-microlayer, subsuperficial water and freshwater, collected during the Italian Expedition of 1997/98. Extractions from the aqueous matrices were carried out in Antarctica (the laboratories of the Italian Base, Terra Nova Bay). Because of the critical space–time conditions in these laboratories, an extraction procedure was developed, suitable for large volumes of water (10?L), in order to combine the extraction of other classes of organic compounds (polychlorinated biphenyls, polycyclic aromatic hydrocarbons and chlorinated pesticides) with those of our direct interest. The VCHC organic extracts were analysed in Italy by GC-ECD and GC-MS. The analyses confirmed the presence of the three halocarbons in Antarctica in quantities ranging from units to some dozens of nanograms per kilogram. The results were evaluated with respect to the local distribution of these compounds and their diffusion on a global scale.  相似文献   

20.
Summary An automated stripping technique for the measurement of dissolved hydrocarbons in sea water is presented together with some results obtained during a ship cruise from Europe to Brazil. The sea water concentrations of NMHC were determined in a three step process: degassing, preconcentration, and gas chromatographic analysis. In a stripping chamber the dissolved gases were purged from sea water with helium. The stripped hydrocarbons were cryogenically concentrated, and after thermal desorption they were injected into the gas chromatograph. The light fraction (C2–C4) was separated on a packed and the heavy fraction (C5–C10) on a capillary column. All valves were microprocessor controlled in order to achieve an automated process. For the C2–C4 hydrocarbons the stripping efficiencies exceeded 90% except for acetylene (80%), the lower limit of detection was 1 to 4.5 pmol hydrocarbon per liter of sea water and the accuracy of the method was better than 25%, depending on the individual hydrocarbons. Typical oceanic concentrations were in the 10 and 100 pmol/l range. Alkenes were generally more abundant than the corresponding alkanes and within the homologous series the concentrations decreased with increasing number of carbon atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号