首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

2.
Di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a promising analogue of the dipyridyl thiosemicarbazone class currently under development as a potential anti-cancer drug. In fact, this class of agents shows markedly greater anti-tumor activity and selectivity than the clinically investigated thiosemicarbazone, Triapine®. However, further development of DpC requires detailed data concerning its metabolism. Therefore, we focused on the identification of principal phase I and II metabolites of DpC in vitro. DpC was incubated with human liver microsomes/S9 fractions and the samples were analyzed using ultra-performance liquid chromatography (UPLCTM) with electrospray ionization quadrupole-time-of-flight (Q-TOF) mass spectrometry. An Acquity UPLC BEH C18 column was implemented with 2 mM ammonium acetate and acetonitrile in gradient mode as the mobile phase. The chemical structures of metabolites were proposed based on the accurate mass measurement of the protonated molecules as well as their main product ions. Ten phase I and two phase II metabolites were detected and structurally described. The metabolism of DpC occurred via oxidation of the thiocarbonyl group, hydroxylation and N-demethylation, as well as the combination of these reactions. Conjugates of DpC and the metabolite, M10, with glucuronic acid were also observed as phase II metabolites. Neither sulfate nor glutathione conjugates were detected. This study provides the first information about the chemical structure of the principal metabolites of DpC, which supports the development of this promising anti-cancer drug and provides vital data for further pharmacokinetic and in vivo metabolism studies.
Figure
Proposed metabolic pathways of DpC  相似文献   

3.
This paper describes the development of an optimized method based on solid-phase extraction (SPE) followed by liquid chromatography–electrospray ionization tandem mass spectrometry (LC–MS/MS) for the simultaneous analysis of ten antibiotic compounds including tetracyclines, sulfonamides, macrolides and quinolones. LC–MS/MS sensitivity has been optimized by alterations to both LC and MS operations. Of the two high resolution columns tested, Waters Symmetry C18 endcapped and Agilent Zorbax Bonus-RP, the latter was found to show better performance in producing sharp peaks and clear separation for most of the target compounds. Optimization of the MS fragmentation collision and cone energy enhanced the peak areas of the target analytes. The recovery of the target compounds from water samples was most efficient on Waters Oasis HLB SPE cartridge, while methanol was shown to be the most suitable solvent for desorbing the compounds from SPE. In addition, acidification of samples prior to SPE was shown to enhance the recovery of the compounds. To ensure a satisfactory recovery, the flow rate through SPE should be maintained at ≤10 mL min−1. The method was successfully applied to the analysis of antibiotics from environmental water samples, with concentrations being <LOD in tap water, between <LOD to 28 ng L−1 in river water and between <LOD to 230 ng L−1 in sewage effluent.  相似文献   

4.
A simple, precise and accurate method for the simultaneous determination of four UV filters and five polycyclic musks (PCMs) in aqueous samples was developed by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC–MS). The operating conditions affecting the performance of SPME-GC–MS, including fiber thickness, desorption time, pH, salinity, extraction time and temperature have been carefully studied. Under optimum conditions (30 μm PDMS fiber, 7 min desorption time, pH 7, 10% NaCl, 90 min extraction time at 24 °C), the correlation coefficients (r2) of the calibration curves of target compounds ranged from 0.9993 to 0.9999. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.2 to 9.6 ng L−1 and 0.7 to 32.0 ng L−1, respectively. The developed procedure was applied to the determinations of four UV filters and five PCMs in river water samples and internal standard was used for calibration to compensate the matrix effect. Good relative recoveries were obtained for spiked river water at low, medium and high levels. The proposed SPME method was compared with traditional SPE procedure and the results found in river water using both methods were in the same order of magnitude and both are quite agreeable.  相似文献   

5.
Monoacylglycerols (MAGs) are lipids found in trace amounts in plants and animal tissues. While they are widely used in various industrial applications, accurate determination of the regio-specific distribution is hindered by the lack of stable, commercially available standards. Indeed, unsaturated β-MAG (or Sn-2 MAG) readily undergoes isomerization into α-MAG (acyl chain is attached to the Sn-1 or the Sn-3 position). In the present study, we describe structural elucidation of α- and β-regio-isomers of monopalmitoyl-glycerol (MAG C16:0) as model compounds in their silylated forms using gas chromatography–mass spectrometry (GC–MS) with electronic impact (EI) ionization. MS fragmentation of α-MAG C16:0 is characterized by the loss of methylene(trimethylsilyl)oxonium (103 amu) and the consecutive loss of acyl chain yielding a fragment ion at m/z 205. The fragmentation pattern of β-MAG C16:0 shows a series of diagnostic fragments at m/z 218, 203, 191 and 103 that are not formed from the α-isomer and hereby enable reliable distinction of these regio-isomers. Possible fragmentation scenarios are postulated to explain the formation of these marker ions, which were also applied to characterize the regio-isomer composition of a complex mixture of MAG sample containing n-3 long-chain polyunsaturated fatty acids.  相似文献   

6.
A rapid and sensitive method for the speciation and quantification of glucosinolates in rapeseed is described. The method combines liquid chromatography (LC) with ion trap mass spectrometry (ITMS) detection. Electrospray ionization (ESI) has been chosen as the ionization technique for the on-line coupling of LC with ITMS. Glucosinolates are extracted from different rapeseeds with MeOH and the extracts are cleaned-up by solid phase extraction with Florisil cartridges. Aqueous extracts are injected into LC system coupled to an ITMS, leading to accurately quantify eight of the most important glucosinolates in rapeseed, by MS2 mode and confirming their structure by MS3 acquisition. All the glucosinolates found in rapeseeds provide good signals corresponding to the deprotonated precursor ion [M-H]. The method is reliable and reproducible, and detection limits range from 0.5 nmol g−1 to 3.7 nmol g−1 when 200 mg of dried seeds of certified reference material are analyzed. Within-day and between-day RSD percentages range between 2.4–14.1% and 3.9–16.9%, respectively. The LC-ESI-ITMS-MS method described here allows for a rapid assessment of these metabolites in rapeseed without a desulfatation step. The overall process has been successfully applied to identify and quantify glucosinolates in rapeseed samples.  相似文献   

7.
In order to assess exposure levels of hospital personnel involved in the preparation and administration of antineoplastic drugs, environmental monitoring should be carried out. Wipe samples, pads, gloves and air samples should be collected at the end of each work shift, properly treated and then analysed using instrumental techniques which are sufficiently sensitive and specific to detect even trace amounts of drug. In this study, a method using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS), incorporating solid phase extraction (SPE), was validated for determination of methotrexate (MTX) in wipe and air samples. Each step of the method was first developed and optimised using ultraviolet detection (UV), and afterwards tandem mass spectrometry was used to obtain a lower limit of quantitation when the expected drug level was less than the analytical UV detection limit. SPE enabled a 20-fold preconcentration of the analyte when using HPLC/UV and a further 30-fold preconcentration was obtained when analysing samples by HPLC/MS/MS. For example, the limit of quantitation (LLQ) was lowered from 3000 ng on wipe (direct injection onto an HPLC/UV system) to 5 ng on wipe (SPE plus HPLC/MS/MS). 7-hydroxymethotrexate was used as internal standard to assess precision and accuracy.  相似文献   

8.
Organophosphate triesters are common flame retardants used in a wide variety of consumer products from which they can migrate and pollute the indoor environment. Humans may thus be continuously exposed to several organophosphate triesters which might be a risk for human health. An analytical method based on direct injection of 5 μL urine into an ultra performance liquid chromatography system coupled to a time-of-flight mass spectrometry has been developed and validated to monitor exposure to organophosphate triesters through their respective dialkyl and diaryl phosphate metabolites (DAPs). The targeted analytes were: di-n-butyl phosphate (DNBP), diphenyl phosphate (DPHP), bis(2-butoxyethyl) phosphate (BBOEP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCPP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). Separation was achieved in less than 3 min on a short column with narrow diameter and small particle size (50 mm × 2.1 mm × 1.7 μm). Different mobile phases were explored to obtain optimal sensitivity. Acetonitrile/water buffered with 5 mM of ammonium hydroxide/ammonium formate (pH 9.2) was the preferred mobile phase. Quantification of DAPs was performed using deuterated analogues as internal standards in synthetic urine (averaged DAP accuracy was 101%; RSD 3%). Low method limits of quantification (MLQ) were obtained for DNBP (0.40 ng mL−1), DPHP (0.10 ng mL−1), BDCIPP (0.40 ng mL−1) and BBOEP (0.60 ng mL−1), but not for the most polar DAPs, BCEP (∼12 ng mL−1) and BCPP (∼25 ng mL−1). The feasibility of the method was tested on 84 morning urine samples from 42 mother and child pairs. Only DPHP was found above the MLQ in the urine samples with geometric mean (GM) concentrations of 1.1 ng mL−1 and 0.57 ng mL−1 for mothers and children respectively. BDCIPP was however, detected above the method limit of detection (MLD) with GM of 0.13 ng mL−1 and 0.20 ng mL−1. While occasionally detected, the GM of DNBP and BBOEP were below MLD in both groups.  相似文献   

9.
An analytical method to determine the total content (i.e., not only in the soluble fraction but also in the particulate one) of eight commonly used UV filters in seawater samples is presented for the first time. Dispersive liquid–liquid microextraction (DLLME) is used as microextraction technique to pre-concentrate the target analytes before their determination by gas chromatography–mass spectrometry (GC–MS). In order to release the UV filters from the suspended particles an ultrasound treatment is performed before DLLME. The ultrasound treatment time was studied in order to achieve a quantitative lixiviation of the target analytes. The type and volume of both disperser and extraction solvent, the sample volume, the pH and the ionic strength involved in the DLLME have been optimized to provide the best enrichment factors. Under the optimized conditions, the method was successfully validated showing good linearity, enrichment factors between 112 and 263 depending on the analyte, limits of detection and quantification in the low ng L−1 range (10–30 ng L−1 and 33–99 ng L−1, respectively) and good intra- and inter-day repeatability (RSD <15%). No significant matrix effects were found. Finally, the method was satisfactorily applied to the analysis of three seawater samples from different origin. Results showed significant amounts of UV filters in the particulate fraction that would have been ignored if only the soluble fraction had been considered. This fact shows that the UV filters are also accumulated in the suspended particles contained in water, what should be taken into account from an environmental standpoint.  相似文献   

10.
A method for the determination of S0 in coal based on the extraction with cyclohexane with subsequent quantitative analysis of elemental sulfur in the extract by GC/MS is described. The quantity of elemental sulfur was determined in four coal samples with different distribution of sulfur forms. The effect of solvent and extraction time on the efficiency of sulfur removal was studied. The elemental sulfur extracted from coal occurred in the form of S6, S7 and S8. Calibration solutions were prepared from freshly recrystalized elemental sulfur. It was found that the injection temperature has a crucial influence on the m/z 64 ion chromatogram.  相似文献   

11.
This work describes a liquid chromatography–electrospray tandem mass spectrometry method for detection of desmopressin in human plasma in the low femtomolar range. Desmopressin is a synthetic analogue of the antidiuretic hormone arginine vasopressin and it might be used by athletes as a masking agent in the framework of blood passport controls. Therefore, it was recently added by the World Anti-Doping Agency to the list of prohibited substances in sport as a masking agent. Mass spectrometry characterization of desmopressin was performed with a high-resolution Orbitrap-based mass spectrometer. Detection of the peptide in the biological matrix was achieved using a triple-quadrupole instrument with an electrospray ionization interface after protein precipitation, weak cation solid-phase extraction and high performance liquid chromatography separation with an octadecyl reverse-phase column. Identification of desmopressin was performed using three product ions, m/z 328.0, m/z 120.0, and m/z 214.0, from the parent ion, m/z 535.5. The extraction efficiency of the method at the limit of detection was estimated as 40% (n = 10), the ion suppression as 5% (n = 10), and the limit of detection was 50 pg/ml (signal-to-noise ratio greater than 3). The selectivity of the method was verified against several endogenous and synthetic desmopressin-related peptides. The performance and the applicability of the method were tested by analysis of clinical samples after administration of desmopressin via intravenous, oral, and intranasal routes. Only after intravenous administration could desmopressin be successfully detected.  相似文献   

12.
n-Butyl benzyl phthalate (BBP) is an endocrine-disrupting chemical. A bacterium species capable of using BBP as the sole source of carbon and energy was isolated from mangrove sediment. Effects of BBP concentration, pH, temperature, and salinity on BBP biodegradation were studied. The optimum pH, temperature, and salinity for the BBP biodegradation were 7.0, 37°C, and 15 g L−1, respectively. BBP was completely degraded within 6 days under optimum conditions, and the biodegradation of BBP could be fitted to a first-order kinetic model. The major metabolites of BBP biodegradation were identified as mono-butyl phthalate, mono-benzyl phthalate, phthalic acid, and benzoic acid by using high-performance liquid chromatography and gas chromatography–mass spectrometry. A preliminary metabolic pathway was proposed for the biodegradation of BBP.   相似文献   

13.
ABSTRACT

A fast, selective and sensitive reversed-phased liquid chromatography coupled to ion-trap mass spectrometry has been developed to elucidate and confirm the diazinon metabolites with a wide range of polarity in the rice plant samples. Sample extraction and purification were performed with a QuEChERS-based (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure. To boost all metabolism sensitivities, all rice extracts were concentrated under vacuum to near dryness and taken up into initial mobile phase. Careful optimisation of the LC–MS/MS parameters were achieved in order to attain a fast separation with the best sensitivity. The detection was carried out on an ion-trap mass spectrometer by electrospray ionisation in positive ion mode (ESI+) with multiple reaction monitoring.  相似文献   

14.
A new analytical method based on simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC–MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid–liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750 μL of acetone as disperser solvent, 100 μL of chloroform as extraction solvent and 100 μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ng mL−1 range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended.  相似文献   

15.
Tapentadol, a centrally acting analgesic was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis, humidity, and thermal stress conditions as per International Conference on Harmonization prescribed guidelines. Tapentadol was found susceptible to oxidative stress that produced two major degradation products DP-I and DP-II. However, it was stable to hydrolysis, photolysis, and thermal stress conditions. A simple, sensitive, and accurate high-performance liquid chromatography stability-indicating assay method (liquid chromatography–mass spectrometer compatible) was developed and validated for identification and characterization of stressed degradation products of Tapentadol. The chromatographic separation of the drug and its degradation products were achieved on Inertsil ODS, C18 (250 × 4.6 mm, i.d., 5 µm) column using a 12.5 mM aqueous ammonium acetate buffer (with 0.2% triethyl amine and final pH of buffer was adjusted to 3.60 with glacial acetic acid): acetonitrile (75:25, v/v) as a mobile phase. The degradation products were characterized by liquid chromatography mass spectrometry and subsequently its fragmentation pathway as well as plausible mechanism for generation of degradation products was also proposed. The stability indicating high-performance liquid chromatographic method was validated with respect to linearity, precision, and accuracy.  相似文献   

16.
This paper describes a method for the determination of a group of personal care products including four UV filters, four preservatives and two antimicrobials in sewage sludge. The method combines pressurized liquid extraction and ultra high performance liquid chromatography–tandem mass spectrometry. Most of the parameters that affect the extraction step such as temperature, pressure, static extraction time, number of cycles, purge time and flush volume were optimized using a fractional experimental design. In the chromatographic step, the compounds were detected by using tandem mass spectrometry with a triple quadrupole analyzer with electrospray ionization in positive and negative modes. The use of small diameter particles (1.8 μm) in the chromatographic column allowed the compounds to be eluted in 9 min. The entire process took a total of 39 min. All recoveries were higher than 72% except for 2,4-dihydroxybenzophenone (a UV filter), whose recovery was 30%. The repeatability and reproducibility between days expressed as RSD (%) (n = 3) were less than 8% and 13%, respectively. The LODs and LOQs were lower than 8 μg/kg and 12.5 μg/kg of dry weight (d.w.), respectively. When the method was applied to determine the compounds in sewage sludge from a domestic sewage treatment plant, triclosan (an antimicrobial) and octocrylene (a UV filter) showed the highest levels, 1490 μg/kg (d.w.) and 1842 μg/kg (d.w.), respectively. This paper describes for the first time the determination of parabens and two UV filters (octyldimethyl-p-aminobenzoic acid and benzophenone-3) in sewage sludge.  相似文献   

17.
18.
An ultra high performance liquid chromatography–tandem mass spectrometry method (UPLC–MS/MS) is proposed for the simultaneous quantification of inosine, adenosine, guanosine, uridine, hypoxanthine, xanthine and uric acid in pork meat, dry-cured and cooked ham. Samples were added with 15N2-xanthine (internal standard) and extracted with boiling water for 30 min. Supernatants were washed with hexane, added with formic acid 10% in water, methanol:acetone (1:1, v/v), evaporated to dryness under N2, and finally re-dissolved in water prior to injection. Chromatographic separation was carried out with a HSS T3 column with a total time of analysis of 15 min. Two specific transitions for each compound were used for identification and quantification (with matrix matched calibration curves). Linearity, limit of detection, repeatability and accuracy were evaluated. The method was used to quantify the seven purines and pyrimidines in 15 commercial samples.  相似文献   

19.
Non-steroidal anti-inflammatory drugs are widely used for treatment of animals. According to Council Directive 96/23/EC, residues of these drugs must be monitored because of the potential risk they pose to the consumers' health. For this reason an LC-MS-MS method was developed for detection of wide range of NSAIDs, including both "acidic" NSAIDs (carprofen, diclofenac, flunixin, meloxicam, phenylbutazone, oxyphenbutazone, tolfenamic acid, mefenamic acid, naproxen, ketoprofen, ibuprofen, firocoxib, rofecoxib, and celecoxib) and "basic" NSAIDs (four metamizole metabolites). Analytes were extracted from milk samples with acetonitrile in the presence of ammonium acetate. One portion of the extract was directly analyzed for the presence of metamizole metabolites; a second portion was cleaned with an amino cartridge. All NSAIDs were separated on a Phenomenex Luna C8(2) column and analyzed by LC-MS-MS in negative (acidic NSAIDs) and positive (metamizole metabolites) ion modes. The method was validated in accordance with the requirements of Commission Decision 2002/657/EC. Within-laboratory reproducibility was in the range 7-28%, and accuracy was in the range 71-116%. The method enabled detection of all the analytes with the expected sensitivity, below the recommended concentrations. The method fulfills the criteria for confirmatory methods and, because of its efficiency, may also be used for screening purposes. The procedure was also successfully verified in the proficiency test organized by EU-RL in 2010. As far as the authors are aware, this is one of the first methods capable of detecting diclofenac residues below the MRL in milk (0.1 μg kg(-1)). An additional advantage is the possibility of simultaneous determination of "acidic" NSAIDs and metamizole metabolites.  相似文献   

20.
A new analytical method for the determination of four hydroxylated benzophenone UV filters (i.e. 2-hydroxy-4-methoxybenzophenone (HMB), 2,4-dihydroxybenzophenone (DHB), 2,2′-dihydroxy-4-methoxybenzophenone (DHMB) and 2,3,4-trihydroxybenzophenone (THB)) in sea water samples is presented. The method is based on dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS) determination. The variables involved in the DLLME process were studied. Under optimized conditions, 1000 μL of acetone (disperser solvent) containing 60 μL of chloroform (extraction solvent) were injected into 5 mL of aqueous sample adjusted to pH 4 and containing 10% NaCl. Before injecting into the GC–MS system, the DLLME extracts were evaporated under an air stream and then reconstituted with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA), thus allowing the target analytes to be converted into their trimethylsilyl derivatives. The best conditions for the derivatization reaction were 75 °C and 30 min. High enrichment factors for all the target analytes (ranging from 58 to 64) and good repeatability (RSD around 6%) were obtained. The limits of detection were in the range of 32–50 ng L−1, depending on the analyte. The recoveries obtained by using the proposed DLLME–GC–MS method evidenced the presence of matrix effects for some of the target analytes, and thereby the standard addition calibration method was employed. Finally, the validated method was applied to the analysis of sea water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号