首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Carbonyls in air are sampled using small DNPH-coated C18 cartridges and analyzed by liquid chromatography with diode array detection. Carbonyl structure confirmation is obtained by comparing diode array spectral scans of samples to the uv-visible spectra (190–600 nm) of some 20 carbonyl hydrazones recorded in the CH3CN—H2O eluent used for LC analysis. Analytical detection limits are 0.09–3.4 nanograms carbonyl and correspond to 0.14–1.24ppb in 60 L air samples. Accuracy was ±5% as measured for independently prepared hydrazone standards. The precision was 1–5% for multiple injections of hydrazone standards and 2–10% for replicate analysis of indoor and outdoor air samples. Excellent agreement was obtained in an interlaboratory comparison that included hydrazone standards as well as indoor air samples.

Cartridge collection efficiency has been tested over a range of conditions (sampling flow rate, volume of air sampled, presence of co-pollutants including photochemical oxidants) and is >0.95 for monofunctional carbonyls, unsaturated carbonyls, and alpha dicarbonyls. Carbonyl recovery by cartridge elution is >0.99 for all carbonyls tested. Examples of applications are given in the fields of atmospheric chemistry, indoor air pollution in museums, and outdoor air quality.  相似文献   

2.
Summary An improved analytical procedure has been developed for the detection of formaldehyde, acetaldehyde, acetone and other volatile carbonyls in clean air. For sampling, 2,4-dinitrophenyl-hydrazine (DNPH) coated silica gel cartridges were used. DNPH reacts with carbonyls and forms carbonyl hydrazones which are extracted with acetonitrile and subsequently separated by reversed phase HPLC. Sampling flow rates up to 3.5 l/min were tested. The quantification limit of the complete sampling and analytical procedure is 60 ng carbonyl which corresponds to a mixing ratio of 1 ppbv HCHO in a 45 l air sample taken during a sampling time of 13 min. Carbonyl mixing ratios down to 0.1 ppbv can be determined. The collection efficiency and the elution recovery range between 96 and 100%; the precision is ±5% for HCHO and ±4% for CH3CHO at mixing ratios of 1 ppbv. This technique can also be applied for the determination of aldehydes and ketones in the aqueous phase, e.g. cloud and fog water. In this case, carbonyls were converted to hydrazones simply by mixing the aqueous sample with an acidified DNPH solution. After 40 min reaction time, the hydrazones were analysed by HPLC. The detection limit was 0.2 mol HCHO/l. Possible interference caused by ozone and NO2 was eliminated by using KI filters connected in series with the DNPH-coated cartridges. The analytical procedure was tested at a mountain measuring station and proved to be a suitable method for monitoring carbonyl compounds in clean air.  相似文献   

3.
Summary Sensitive and selective detection of dansylhydrazones of atmospheric carbonyl compounds (aldehydes and ketones) can be achieved using high performance liquid chromatography (HPLC) with fluorescence or chemiluminescence detection. The carbonyl compounds are derivatized by drawing air through small glass cartridges packed with porous glass particles impregnated with dansylhydrazine. After sampling, the contents of the cartridges are analyzed on-line by using a small plug of water (200 L) to transfer and focus the hydrazone derivatives at the head of a HPLC column. Greatly increased sensitivity over traditional methods derives from 1) analysis of the entire contents of the sampling cartridge, and 2) detection by fluoresence or peroxyoxalate chemilum-inescence. Results are compared for photo-initiated and H2O2-initiated peroxyoxalate chemiluminescence. This novel and practical system enables the detection of sub-ppbv concentrations of formaldehyde, acetaldehyde, acetone and higher carbonyls in air using relatively short sampling times.  相似文献   

4.
A procedure for coating in situ silica gel in prepacked cartridges with 2,4-dinitrophenylhydrazine (DNPH) acidified with hydrochloric acid is described. The coated cartridge was compared with a validated DNPH impinger method for sampling organic carbonyl compounds (aldehydes and ketones) in diluted automotive exhaust emissions and in ambient air for subsequent analysis of the DNPH derivatives by high performance liquid chromatography. Qualitative and quantitative data are presented that show that the two sampling devices are equivalent. The coated cartridge is ideal for long-term sampling of carbonyls at sub to low parts-per-billion level in ambient air or for short-term sampling of carbonyls at low ppb to parts-per-million level in diluted automotive exhaust emissions. An unknown degradation product of acrolein has been tentatively identified as x-acrolein. The disappearance of acrolein in the analytical sample matrix correlates quantitatively almost on a mole for mole basis with the growth of x-acrolein. The sum of the concentration of acrolein and x-acrolein appears to be invariant with time.  相似文献   

5.
Summary Airborne C1- and C2-halocarbons can be determined by cartridge sampling, gas chromatography and electron capture detection. High accuracy is achieved in the concentration range typical for rural and forest air, when the following components of the analytical train are meticulously optimized: enrichment on adsorption cartridges, thermodesorption, cryofocussing, capillary gas chromatography and electron capture detection. The parameters associated with sample collection, i.e. type and properties of adsorbent, dimensions and design of the cartridge, temperatures, and gas flows must be judiciously balanced under consideration of the prevalent air concentrations and the dynamic range of the ECD, in order to achieve standard deviations of 10% or less for replicate analyses.
Optimierung der gas-chromatographischen Bestimmung von Halogenkohlenwasserstoffen in Luft
  相似文献   

6.
A simple, highly sensitive analytical method for measuring many kinds of carbonyls in air using a passive sampler containing a sorbent (silica gel) coated with 2,4-dinitrophenylhydrazine has been developed. The carbonyls collected by the sampler were extracted with a solvent, and the extracts were subjected to high-performance liquid chromatography (HPLC; UV detection) without first being concentrated. In this method, the volume injection is examined, and is found to have a sensitivity at least 20 times that of ordinary HPLC methods. The air concentrations of nine carbonyls collected by passive sampling over a period of 24?h were estimated by means of conversion equations derived from the results of active sampling;c?=?10[log ( y )??? b ] a , where c is the carbonyl concentration in air (µg/m3); y is the amount of carbonyl collected by the passive sampler (µg); and a and b are constants for each carbonyl compound. The calculated air concentrations were consistent with the concentrations measured by active sampling. This method may be useful in determining personal exposure to ambient carbonyls.  相似文献   

7.
A comparison between C18 silica and multi‐walled carbon nanotubes (MWCNTs) in the extraction of Chlorpyrifos and Phosalone in environmental water samples was carried out using HPLC. Parameters affecting the extraction were type and volume of elution solvent, pH and flow rate of sample through the adsorbent. The optimum conditions obtained by C18 cartridge for adsorption of these pesticides were 4 mL dichloromethane as elution solvent, sample pH of 5, flow rate of 1 mL/min, and those for MWCNT cartridge were 3 mL dichloromethane, pH of 5 and flow rate of 10 mL/min, respectively. Optimized mobile phase for separation and determination of these compounds by HPLC was methanol/water (80:20 v/v) with pH=5 (adjusted with phosphate buffer). Under optimal chromatographic and SPE conditions, LOD, linear range and precision (RSD n=8) were 3.03×10?3, 0.01–5.00 μg/mL and 2.7% for Chlorpyrifos and 4.03×10?4, 0.01–5.00 μg/mL and 2.3% for Phosalone, in C18 cartridge, respectively. These values for MWCNT were 4.02×10?6, 0.001–0.500 μg/mL and 1.8% for Chlorpyrifos and 1.02×10?6, 0.001–0.500 μg/mL and 1.5% for Phosalone, respectively.  相似文献   

8.
Pang X  Lewis AC  Hamilton JF 《Talanta》2011,85(1):406-414
The classical analytical method for gaseous carbonyl measurements based on solid sorbent coated with 2,4-dinitrophenylhydrazine (DNPH) and analysis by HPLC/UV suffers from limited resolution of carbonyls with similar molecular structures and high molecular weights. In this paper, we report the development of a sensitive and reliable analytical method for simultaneous determination of 21 airborne carbonyls within the C1-C9 range. Carbonyls were collected on a sampling tube filled with 100 mg Tenax TA (60-80 mesh) sorbent coated with 1 μmol pentafluorophenyl hydrazine (PFPH), followed by solvent desorption and analysis by gas chromatography (GC)/mass spectrometry (MS). Common carbonyl gases including formaldehyde, acetaldehyde, butyraldehyde, hexaldehyde and benzaldehyde at ppbv levels were collected with efficiency greater than 90% onto sampling tubes at a flow rate of 100 mL min−1. The limits of detection (LODs, signal/noise = 3) of the tested carbonyls were in the range of 0.08-0.20 ppbv for a sampled volume of 24.0 L. These limits are less than or comparable with those that can be obtained using the DNPH-HPLC method. The method has been field-tested both in ambient air of York and in diluted cigarette smoke. Comparing field tests with the classical DNPH-HPLC method, good agreement was displayed between the two methods for the same carbonyls, but with more carbonyl species detected by the PFPH-GC/MS method. The PFPH-GC/MS method provides better molecular separation for carbonyls with similar structures, is highly sensitivity and gives confirmation of identification by structures when detected using MS.  相似文献   

9.
An automated monitoring system for various C1 to C5 gas-phase organic carbonyls in ambient air is described. The system consists of a parallel plate diffusion scrubber (PPDS), which is coupled with a high-performance liquid chromatography–ultraviolet (HPLC–UV) system using an automated injection valve. Compared with an annular diffusion scrubber (DS) employed so far for gas-phase carbonyl monitoring, PPDS shows an improved collection efficiency for formaldehyde, acetaldehyde, propionaldehyde, and acetone with >97% at an airflow rate of 0.5?L/min. High gas–liquid concentration ratios of PPDS and an optimised HPLC–UV system allow limits of detection (LOD) in a range of 80–500?pptv. A low liquid hold-up volume of the PPDS results in a short response time of about 10?min. Additionally, the optimised analysis time for 13 carbonyl compounds containing calibration standard enables brief measurement intervals of 25?min. The developed PPDS–HPLC system shows its reliability from urban site monitoring in Seoul, South Korea.  相似文献   

10.
Abstract

Solid-phase extraction using C18 silica cartridges, liquid chromatography analysis and UV diode array detection were investigated for the routine trace-level determination of neutral pesticides over a wide range of polarity. Detection limits below the 0.1 μg/1 range were easily obtained in drinking water. If neutral and acidic pesticides over a wide range of polarity have to be determined in the same run, samples have to be acidified to obtain good recoveries of extraction. The effect of the sample matrix was studied and detection limits in the 0.1 μg/1 range were obtained in drinking water except for the more polar ones which are in the interfering peak of humic and fulvic acids. For surface water, a clean-up step using a Florisil cartridge has to be included in the procedure that allows detection limits in the range 0.05–0.3 μg/1.  相似文献   

11.
12.
A sensitive and reliable method has been developed for the simultaneous determination of 20 airborne carbonyl compounds in the C1-C10 range. The carbonyls were collected onto solid sorbent coated with pentafluorophenyl hydrazine (PFPH), followed by solvent extraction and gas chromatographic (GC)/mass spectrometric (MS) analysis of the PFPH derivatives. The sorbent is packed into two separate sections in a glass sampling tube. The two-section design allows convenient checking of collection efficiency and breakthrough. The sampling tube, with a coating amount of 971 nmol PFPH per 100 mg Tenax TA and operated at a sampling flow rate of 80 mL min−1, collects the 20 carbonyls with efficiencies above 95%. Hexane extracts the collected carbonyls in their PFPH derivatives in the sampling tube with better than 95% extraction efficiency. It is necessary to let the sampling tube sit at ambient temperature for 3 days before solvent extraction to ensure complete derivatization of the carbonyls. The limits of detection (LODs) of the tested carbonyls are in the range of 3.7-11.6 ng per sample. The method has been field-tested both in ambient environment and in an indoor environment from burning mosquito-repellent incense. Eighteen carbonyls were detected in the ambient air samples with the exception of o-tolualdehyde and m-tolualdehyde, while all the 20 target carbonyls were found in the incense smoke. Compare field test with classical DNPH-HPLC/UV method, good agreement exited between the two methods for lower molecular carbonyls but PFPH method is found to be a better analytical method for determination of high molecular weight carbonyls.  相似文献   

13.
Abstract

An analytical procedure utilizing solid phase extraction with octadecylsilane bonded to silica (C18) cartridges combined with gas chromatography/mass spectrometry (GC/MS) was developed to analyze semi-volatile chlorinated acids found in drinking water. A system has been designed which will enable the analysis of this class of compounds with minimum sample manipulation and detection limits in the low ng/L range. The overall accuracy and precision were comparable to other methods used for compliance purposes. Among the advantages of the developed methodology are its applicability for field sampling and at the same time, provides a simple and inexpensive mean for sample preservation.  相似文献   

14.
Ozone in ambient air is collected onto silica gel cartridges impregnated with pentafluorophenylhydrazine (PFPH) and 1,2-di(4-pyridyl)ethylene (DPE), so that the pyridine-4 aldehyde formed by DPE oxidation is converted into the corresponding PFPH derivative (PPH). The latter product is determined by HRGC/MS. Since the ozonolysis reaction proceeds stoichiometrically on the cartridge, there is no need for calibration in the gas phase with a standardized ozone source. When compared with UV photometry analyzers, this active chromatographic method (ACM) demonstrates a very good accuracy (ACM/UV photometer = 0.97) and precision (12.0–14.0%) under both laboratory and field sampling conditions at ozone concentrations of 20–200 μg m–3 and exposure times of 1–3 h. The sampling performance was found to be insensitive to relative humidity (r.h.) variations in the 25–90% range and any interference effects could not be observed from various agents, except light, which can be eliminated by using an aluminium shelter. The detection limit for ozone achievable with the ACM in air samples collected at 0.5 L min–1 for 1 h was found better than 0.5 μg m–3.  相似文献   

15.
The present work describes the development of a sensitive and reliable analytical method based on solid‐phase extraction followed by analysis using liquid chromatography with tandem mass spectrometry for the simultaneous determination of pharmaceuticals from antibiotics (fluoroquinolones, sulfonamides, and their N4‐acetyl metabolites, and trimethoprim as sulfonamides synergist) and anthelmintics groups. SPE was optimized using different cartridges (Strata‐X, Oasis HLB, Strata C18‐E, Isolute C18, SampliQ C8/Si‐SCX). The highest recovery was achieved using Strata X cartridge (>80%) with good reproducibility (RSDs < 5%) despite various physicochemical properties of the compounds. Investigated analytes were identified and quantitatively determined by liquid chromatography with tandem mass spectrometry using multiple reaction monitoring. The method was shown to be linear over the concentration range of 0.05–30 μg/L for febantel and albendazole, and 0.10–60 μg/L for all other pharmaceuticals. Correlation coefficients were >0.99 for all compounds except for sulfamethazine (0.98). In order to demonstrate the applicability of the developed method, wastewater from the veterinary industry was analyzed. Results evidenced the presence of febantel, praziquantel, albendazole, enrofloxacin, sulfamethazine, and sulfadiazine.  相似文献   

16.
Abstract

A rapid, sensitive and simple to operate HPLC method for the simultaneous determination of carbamazepine, carbamazepine 10,11-epoxide and 10,11-dihydro-10,11-trans-dihydroxycarbamazepine in plasma is described. The drug and its metabolites are extracted from plasma using commercially available reversed-phase octadecylsilane bonded-silica columns (Bond Elut C18, 2.8 ml capacity). Separation was achieved by reversed-phase chromatography, using a mobile phase consisting of acetonitrile - methanol - water (19:37:44) at a flow-rate of 1.8 ml/min in conjunction with a Waters Assoc. Nova-Pak C18 column. The analytical column, in Radial-Pak cartridge form, was used in combination with a Waters Assoc. Z-module RCSS and protected by a Waters Assoc. Guard-Pak precolumn module containing a Guard-Pak μBondapak C18 insert. Using ultraviolet detection at 214 nm, levels in the region of 50–100 ng/ml for CBZ and its metabolites can be measured with only 250 μl of plasma. The method has been used to determine steady-state concentrations of the drug and its metabolites in paediatric patients.  相似文献   

17.
Pal R  Kim KH 《Analytica chimica acta》2008,610(2):289-296
In this study, the analytical bias involved in the application of the 2,4-dinitrophenylhydrazine (2,4-DNPH)-coated cartridge sampling method was investigated for the analysis of five atmospheric carbonyl species (i.e., acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde). In order to evaluate the potential bias of the sampling technique, a series of the laboratory experiments were conducted to cover a wide range of volumes (1–20 L) and concentration levels (approximately 100–2000 ppb in case of acetaldehyde). The results of these experiments were then evaluated in terms of the recovery rate (RR) for each carbonyl species. The detection properties of these carbonyls were clearly distinguished between light and heavy species in terms of RR and its relative standard error (R.S.E.). It also indicates that the studied analytical approach can yield the most reliable pattern for light carbonyls, especially acetaldehyde. When these experimental results were tested further by a two-factor analysis of variance (ANOVA), the analysis based on the cartridge sampling method is affected more sensitively by the concentration levels of samples rather than the sampling volume.  相似文献   

18.
An LC‐MS/MS method developed for simultaneous analysis of 54 veterinary drug residues of six families in pork meat samples, including sulfanilamide, nitroimidazoles, quinolones, macrolide antibiotics, lincosamides, and praziquantel. The pork meat sample was prepared by extraction with ACN, and clean‐up on a C18 SPE cartridge. The sample was separated on a C8 column and eluted with ACN, methanol, and formic acid. The MS/MS detector is operated in the multiple reaction monitoring mode, acquiring two specific precursor‐product ion transitions per target compound. The method showed excellent linearity (R2 ≥ 0.99) and high precision (relative SD, RSD ≤ 19.8%) for all compounds. The method quantification limits of 54 veterinary drug residues were in the range of 0.3–3.0 μg/kg. Recoveries for most analytes based on matrix‐matched calibration in matrices were 20.9–121.0%. This method has been successfully applied for analysis of more than 100 pork meat samples from the local market; five of the 54 drugs were detected.  相似文献   

19.
Commercial solid-phase extraction (SPE) cartridges with C18 bonded silica packings effectively cleaned up acetonitrile extracts of 3-g samples of fats and oils for determination of organophosphorus pesticide residues by gas chromatography with flame photometric detection. Cartridges from three different sources were tested and found to differ in lipid capacity and inertness (free silanol activity). Consequently, the amount of packing (i.e., number of cartridges) and/or the choice of eluent used were adjusted for each brand of cartridge to achieve optimum clean-up and analyte recovery. Seven pesticides with a wide range of polarity (acephate, azodrin, chlorpyrifos, diazinon, malathion, methamidophos and methyl parathion) were separated from coextracted lipids by elution with either acetonitrile or methanol, depending on the brand of cartridge used. Cartridges were regenerated by purging lipids with dichloromethane and were reused numerous times without apparent loss of effectiveness. Recoveries from vegetable oils and butterfat fortified with the seven compounds at levels of 0.05–0.87 μg g?1 ranged from 80 to 103%. Practical limits of determination range from 0.01 to 0.08 μg g?1, depending on analyte response.  相似文献   

20.
《Analytical letters》2012,45(12):2265-2277
Abstract

An analytical procedure for measurement of cyanuric acid or trichlor oisocyanuric acid in air has been developed. The procedure involves air sampling with a 37-mm PVC membrane filter, recovery with a phosphate buffer, and analysis by high performance liquid chromatography with a UV detector at 225 nm. The interior surface of the front piece of the cassette filter holder also is analyzed. Average recoveries were 0.98 to 1.00 after fortification of PVC filters with 12- to 412-μg quantities of cyanuric acid. Average recoveries of trichloroisocyanuric acid were 0.83 to 0.98 after fortification of glass surfaces with 12- to 424-μg quantities (these are reasonable approximations for recoveries of trichloroisocyanuric acid from PVC filters). The analyst should ascertain which analyte is present at the sampling site because trichloroisocyanuric acid reacts with water in the phosphate buffer to form cyanuric acid in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号