首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
He Q  Chang X  Wu Q  Huang X  Hu Z  Zhai Y 《Analytica chimica acta》2007,605(2):192-197
A new functional monomer N-(o-carboxyphenyl)maleamic acid (CPMA) was synthesized and chosen for the preparation of surface-grafted ion-imprinted polymers (IIPs) specific for thorium(IV). Polymerizable double bond was introduced to silica gel surface by amidation reaction between -NH2 and maleic anhydride. In the ion-imprinting process, thorium(IV) was complexed with the carboxyl groups, then was imprinted in the polymers grafted to the silica gel surface. The imprinted Th(IV) was removed with 3 mol L−1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Th(IV). The relatively selective factor (αr) values of Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), Th(IV)/U(VI), and Th(IV)/Zr(IV) were 85.7, 88.9, 26.6, 64.4, and 433.8, respectively, which were greater than 1. The precision (R.S.D.), the detection limit (3σ), and the quantification limit (10σ) of the method were 1.9%, 0.51 ng mL−1 and 1.19 ng mL−1, respectively. The prepared IIPs as solid-phase extractants were successfully applied for the preconcentration of trace thorium in natural and certified samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) with satisfactory results.  相似文献   

2.
A novel Pd(II)-imprinted amino-functionalized silica gel sorbent was prepared with the help of a surface-imprinting technique for the preconcentration and separation of Pd(II) prior to its determination by inductively coupled plasma atomic emission spectrometry. Compared to the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had a higher adsorption capacity and selectivity for Pd(II). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Pd(II) was 26.71 mg g−1 and 10.13 mg g−1, respectively. The relative selectivity factor (αr) of Pd(II)/Zn(II), Pd(II)/Au(III), Pd(II)/Ru(III), Pd(II)/Rh(III), Pd(II)/Pt(IV), Pd(II)/Ir(III), Pd(II)/Fe(III) and Pd(II)/Zn(II) is 39.0, 60.2, 92.0, 85.0, 50.0, 58.0 and 45.0, respectively. The detection limit (3σ) of the method is 0.36 μg L−1. The relative standard deviation was 3.2% for eight replicate determinations of 10 μg of Pd2+ in 200 mL water sample. The method was validated by analyzing a standard reference material, and the results obtained were in good agreement with the standard values. The method was also applied to the determination of trace palladium in geological samples with satisfactory results.  相似文献   

3.
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L−1 HNO3. The preconcentration factor was 100 for a 100 mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 μg L−1. The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g−1 for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.  相似文献   

4.
Ofloxacin was successfully used as a chemical modifier to improve the reactivity of silica gel in terms of selective binding and extraction of heavy metal ions. This new functionalised silica gel (SG-ofloxacin) was as an effective sorbent for the solid-phase extraction (SPE) of Cd(II) and Pb(II) in biological and natural water samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective adsorption of trace levels of Cd(II) and Pb(II) were optimised with respect to different experimental parameters using the batch and column procedures. The time for 70% sorption for Cd(II) and Pb(II) was less than 2 min. Complete elution of the adsorbed metal ions from the SG-ofloxacin was carried out using 2.0 mL of 0.5 mol L?1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.17 and 48.69 mg g?1 for Cd(II) and Pb(II), respectively. The detection limits of the method were found to be 0.29 and 0.13 ng mL?1 for Cd(II) and Pb(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was lower than 3.0% (n = 5). The method was applied to the recovery of Cd(II) and Pb(II) from the certified reference material (GBW 08301, river sediment) and to the simultaneous determination of these cations in different water and biological samples with satisfactory results and yielding 100-folds enrichment factor.  相似文献   

5.
A simple and reliable approach using surface imprinting technique combined with chitosan incorporated sol-gel process was established to synthesise a novel Co(II)-imprinted polymer (Co-IIP) with attapulgite as the support material. Then the prepared polymer was characterised by using fourier tranmission infrared spectra (FT-IR) and scanning electron microscopy (SEM), and the imprinting mechanism of Co-IIP was proposed. Batch experiments studies were performed to evaluate the adsorption kinetics, selective recognition, adsorption isotherm, desorption and regeneration characters of Co-IIP. Results showed that Co-IIP offered fast kinetics for the adsorption and desortion Co2+ under the optimum conditions. The adsorption and selective recognition Co2+ were both followed the order Co-IIP?>?attapulgite?>?NIP. Moreover, Langmuir adsorption isotherm fitted well for the experimental equilibrium data of Co-IIP, and the maximum adsorption capacity of Co-IIP was 31.5?mg?g?1. Furthermore, Co-IIP could be reused four times with only about 13.42?~?16.17% regeneration loss, and the enrichment factor was more than 10.0. The developed method was also successfully applied to the determination of trace Co2+ in river sediments with satisfactory results. The relative standard deviation of the method (RSD) and the detection limit (3σ) were 1.35% and 0.0263, respectively.  相似文献   

6.
《Analytical letters》2012,45(9):1005-1008
Abstract

Thorium has been determined amperometrically at an applied e. m. f. of -1.2V with fifteen maleanilic acids. Out of these o-tolyl, p-tolyl, 1-naphthyl, 2-naphthyland 4-amino maleanilic acid were found promising analyticalreagentsand most effective. Th(IV) in the range 6.60 to 2350.0 mg per 100 ml can be determined with an error of ± 0.2%. The interference of fifty-five ions were studied and only five ions Zn(II), Pb(II), Fe(III), UO2 (II) and Zr(IV) interfered. which could be masked by the addition of S2O2 3 or SCN?, Cl? or SO2- 4, SCN? or citrate, citrate or tartrate and P2O4- 7 respectively.  相似文献   

7.
A novel chelating resin (poly-Cd(II)-DAAB-VP) was prepared by metal ion imprinted polymer (MIIP) technique. The resin was obtained by one pot reaction of Cd(II)-diazoaminobenzene-vinylpyridine with cross-linker ethyleneglycoldimethacrylate (EGDMA). Comparing with non-imprinted resin, the poly-Cd(II)-DAAB-VP has higher adsorption capacity and selectivity for Cd(II). The distribution ratio (D) values for the Cd(II)-imprinted resin show increase for Cd(II) with respect to both D values of Zn(II), Cu(II), Hg(II) and non-imprinted resin. The relatively selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II), are 51.2, 45.6, and 85.4, which are greater than 1. poly-Cd(II)-DAAB-VP can be used at least 20 times without considerable loss of adsorption capacity. Based on poly-Cd(II)-DAAB-VP packed columns, a highly selective solid-phase extraction (SPE) and preconcentration method for Cd(II) from aqueous solution was developed. The MIIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 30 μg l−1. The detection limit and quantification limit were 0.093 and 0.21 μg l−1 (3σ) for flame atomic absorption spectrometry (FAAS). The relative standard deviation of the eleven replicate determinations was 3.7% for the determination of 10 μg of Cd(II) in 100 ml water sample. Determination of Cd(II) in certified river sediment sample (GBW 08301) demonstrated that the interfering matrix had been almost removed during preconcentration. The column was good enough for Cd(II) determination in matrixes containing components with similar chemical property such as Cu(II), Zn(II) and Hg(II).  相似文献   

8.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

9.
The coordination around the thorium(IV) ion in aqueous perchlorate, chloride and nitrate solutions has been determined from large angle X-ray scattering measurements. In perchlorate solutions, where inner-sphere complexes are not formed, the first coordination sphere contains 8.0±0.5 water molecules with Th-H2O bond lengths of 2.485 Å. In chloride solutions inner-sphere complexes are formed, which lead to an increase in the coordination number. In nitrate solutions the nitrate ions are bonded as bidentate ligands to the thorium ion. The bond lengths are similar to those found in crystalline hydrates of thorium nitrate. The coordination numbers found for thorium(IV) in solution are compared with previously reported values for lower charged ions of similar size.On leave from Department of Inorganic Chemistry Royal Institute of Technology S-10044 Stockholm Sweden  相似文献   

10.
A new simple and reliable method has been developed to selectively separate and concentrate ultra trace amounts of copper ion in aqueous samples for subsequent measurement by atomic absorption spectrometry (AAS). The Cu2+ ions are adsorbed selectively and quantitatively during passage of aqueous solutions through octadecyl silica membrane disks modified with bis(2-hydroxyphenylamino) glyoxime. The retained copper ions then stripped from the disk with a minimal amount of 0.2 M nitric acid solution as eluent, and determined by AAS. The proposed method permitted large enrichment factors of about 100 or higher.The limit of detection of the proposed method is 0.004 ng ml−1. The maximum capacity of the membrane disks modified with 25 mg of ligand was found to be 280±32 μg of copper(II). The effects of various cationic interferences on the percent recovery of copper in binary mixtures were studied.The method was successfully applied to the recovery and determination of copper in several water samples.  相似文献   

11.
A novel dual-ligand reagent (2Z)-N,N′-bis(2-aminoethylic)but-2-enediamide, was synthesized and applied to prepare metal ion-imprinted polymers (IIPs) materials by ionic imprinted technique for selective solid-phase extraction (SPE) of trace Cd(II) from aqueous solution. In the first step, Cd(II) formed coordination linkage with the two ethylenediamine groups of the synthetic monomer. Then the complex was copolymerized with pentaerythritol triacrylate (crosslinker) in the presence of 2,2′-azobisisobutyronitrile as initiator. Subsequently, the imprinted Cd(II) was completely removed by leaching the dried and powdered materials particles with 0.5 M HCl. The obtained IIPs particles exhibited excellent selectivity for target ion. The distribution ratio (D) values of Cd(II)-IIPs for Cd(II) were greatly larger than that for Cu(II), Zn(II) and Hg(II). The relative selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II) were 25.5, 35.3 and 62.1. The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cd(II) was 32.56 and 6.30 mg g−1, respectively. Moreover, the times of adsorption equilibration and complete desorption were remarkably short. The prepared Cd(II)-IIPs were shown to be promising for solid-phase extraction coupled with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of trace Cd(II) in real samples. The precision (R.S.D.) and detection limit (3σ) of the method were 2.4% and 0.14 μg L−1, respectively. The column packed with Cd(II)-IIPs was good enough for Cd(II) separation in matrixes containing components with similar chemical behaviour such as Cu(II), Zn(II) and Hg(II).  相似文献   

12.
A new Fe(III)-imprinted amino-functionalized silica gel sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Fe(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Fe(III). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Fe(III) was 25.21 and 5.10 mg g−1, respectively. The largest selectivity coefficient of the Fe(III)-imprinted sorbent for Fe(III) in the presence of Cr(III) was over 450. The relatively selective factor (αr) values of Fe(III)/Cr(III) were 49.9 and 42.4, which were greater than 1. The distribution ratio (D) values of Fe(III)-imprinted polymers for Fe(III) were greatly larger than that for Cr(III). The detection limit (3σ) was 0.34 μg L−1. The relative standard deviation of the method was 1.50% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08301 and GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace iron in plants and water samples with satisfactory results.  相似文献   

13.
A procedure has been proposed for the separation and preconcentration of trace amounts of thallium. It is based on the adsorption of thallium ions onto organo nanoclay loaded with 1-(2-pyridylazo)-2-naphthol (PAN). Thallium ions were quantitatively retained on the column in the pH range of 3.5–6.0, whereas quantitative desorption occurs with 5.0?mL of 5% ascorbic acid and thallium was determined by flame atomic absorption spectrometry. Linearity was maintained between 0.66?ng?mL?1–15.0?µg?mL?1?in initial solution. Detection limit was 0.2?ng?mL?1?in initial solution and preconcentration factor was 150. Eight replicate determinations of 2.0?µg?mL?1 of thallium in final solution gave a relative standard deviation of ±1.48%. Various parameters have been studied, such as the effect of pH, breakthrough volume and interference of a large number of anions and cations and the proposed method was used to determine thallium ions in water and standard samples. Determination of thallium ions in standard sample showed that the proposed method has good accuracy.  相似文献   

14.
Grafting from polymerisation technique has been used to prepare Th(IV) ion-imprinted polyvinyl sulfonate (IIPVS)-bonded silica particles. The graft polymerisation of vinyl sulfonate (VS) on the surface of silica particles was achieved in aqueous medium through thermal decomposition of surface-bound azo initiators (60°C) in the presence of thorium ion. The prepared material was characterised by Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. The entrapped template ion was then removed using 2 M HCl. The experimental batch rebinding data were successfully described by the Langmuir–Freundlich model. The prepared material was then packed to a PTFE micro-column (20 mm × 3.0 mm, id) to evaluate its efficiency in column operations prior to determination by inductively coupled plasma-mass spectrometry (ICP-MS). The limit of detection of the method and breakthrough capacity of the column was evaluated as 0.074 µg L?1 and 0.83 mg g?1, respectively. The selectivity of the prepared polymer towards Th(IV) ion was investigated in the presence of some foreign competitor ions, including U(VI). Finally, the proposed method has been used to determine Th(IV) ion in real samples.  相似文献   

15.
A new chelating polymeric sorbent is developed using Merrifield chloromethylated resin anchored with calix[4]arene-o-vanillinsemicarbazone for simultaneous separation and solid phase extractive preconcentration of U(VI) and Th(IV). The “upper-rim” functionalized calix[4]arene-o-vanillinsemicarbazone was covalently linked to Merrifield resin and characterized by FT-IR and elemental analysis. The synthesized chelating polymeric sorbent shows superior binding affinity towards U(VI) and Th(IV) under selective pH conditions. Various physico-chemical parameters that influence the quantitative extraction of metal ions were optimized. The optimum pH range and flow rates for U(VI) and Th(IV) were 6.0-7.0 and 1.0-4.0 ml min−1 and 3.5-4.5 and 1.5-4.0 ml min−1, respectively. The total sorption capacity found for U(VI) and Th(IV) was 48734 and 41175 μg g−1, respectively. Interference studies carried out in the presence of diverse ions and electrolyte species showed quantitative analyte recovery (98-98.5%) with lower limits of detection, 6.14 and 4.29 μg l−1 and high preconcentration factors, 143 and 153 for U(VI) and Th(IV), respectively. The uptake and stripping of these metal ions on the resin were fast, indicating a better accessibility of the metal ions towards the chelating sites. The analytical applicability of the synthesized polymeric sorbent was tested with some synthetic mixtures for the separation of U(VI) and Th(IV) from each other and also from La(III), Cu(II) and Pb(II) by varying the pH and sequential acidic elution. The validity of the proposed method was checked by analyzing these metal ions in natural water samples, monazite sand and standard geological materials.  相似文献   

16.
A broad selective molecularly imprinted polymers-based solid phase extraction (MISPE) for levonorgestrel (LNG) from water samples was developed. Using LNG as a template molecule, acrylamide (AA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as linking agent and bulk polymerisation as a synthetic method, the molecularly imprinted polymers (MIPs) were synthesised and characterised. The MIPs displayed a high specific rebinding for LNG with the imprinting factor of 3.71. The Scatchard analysis showed that there was at least one class of binding site for LNG formed in the MIPs with the dissociation constant of 8.046?µg?mL?1. The results of selectivity testing indicated that the MIPs also exhibited high cross-reactivity with structurally related compounds (estrone, methylprednisolone and ethinyl estradiol), but no recognition with non-structurally related compound (indomethacin), suggesting that the MIPs could be used as a broad recognition absorbent. MISPE column was prepared by packing MIPs particles into a common SPE cartridge. The MISPE extraction conditions including loading, washing and eluting solutions were carefully optimised. Water samples spiked with LNG were extracted by MISPE column and detected by high-performance liquid chromatography. The recoveries were found to be 79.97?~?132.79% with relative standard deviations (RSD) of 1.92?~?10.43%, indicating the feasibility of the prepared MIPs for LNG extraction.  相似文献   

17.
The immobilization of purpurogallin on the surface of amino group containing silica gel phase for the formation of a newly synthesized silica gel-bound purpurogallin (SGBP) is described. The surface modification was studied and evaluated by determination of the surface coverage value by both the elemental analysis and metal probe testing method, which was found to be 0.485 and 0.460 mmol g−1, respectively. The metal sorption properties of SGBP were examined by a series of di- and tri-valent metal ions. The metal capacity values (mmol g−1) for this series of metal ions were also determined under different buffer solutions (pH 1.0–6.0) as well as shaking times by the batch equilibrium technique. The results of this study confirmed the strong affinity and selectivity as well as the fast equilibration and interaction processes of SGBP and Fe(III) compared to the other tested metal ions. The reduction–oxidation process of iron(II)/iron(III) by SGBP was also studied and the results indicated only 2.1% reduction of iron(III) into iron(II). The selectivity incorporated into silica gel phase via the immobilization of purpurogallin was intensively studied for a several binary mixtures containing iron(III)—another interfering metal ion. The determined percentage extraction values of iron(III) from these mixtures were found to be in the range of 94–100%. The potential applications of SGBP as a selective solid extractor for iron(III) from natural tap water samples and real matrices were also studied and the results revealed good percentage extraction values of iron(III) (93.5−94.9±4.6−5.3%) of the spiked iron(III) in the acidified tap water samples as well as a high preconcentration factor of 500 was also established when SGBP was used as a selective solid phase extractor and preconcentration of iron(III) from acidified soft drink samples with percentage recovery values of (98.0−97.4±4.7−5.3%) of the spiked iron(III).  相似文献   

18.
Absalan G  Safavi A  Maesum S 《Talanta》2001,55(6):352-1233
Artificial neural networks (ANNs) are among the most popular techniques for nonlinear multivariate calibration in complicated mixtures using spectrophotometric data. In this study we propose a computer-based method for removing Te(IV) interference in the determination of Se(IV) using artificial neural networks. In this way, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The resulting RMSE of prediction for selenium was obtained as 0.108.  相似文献   

19.
20.
The synthesis and performance of a molecularly imprinted polymers (MIPs) as a selective solid phase extraction sorbent for the preconcentration of the carbamate pirimicarb from water samples is described. The MIP was prepared using pirimicarb as the template, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer, and using chloroform as the solvent. The detection of pirimicarb was carried out by differential pulse voltammetry (DPV) at a hanging mercury drop electrode (HMDE) in 0.1 mol l−1 HCl. Solvents of different polarities were checked for the polymer synthesis, and different experimental variables (sample pH, selection of the eluent used, eluent volume, analyte and eluent flow rates and sample volume) associated with the rebinding/extraction process were optimised. For a 25 ml sample, the process took about 13 min and resulted in a nominal enrichment factor of 50 (eluent MeOH:H2O:HAc, 7:2:1; 0.5 ml) for pirimicarb. A limit of detection of 4.1 μg l−1 was obtained, and a good reproducibility of the measurements using different MIP microcolumns was found. Furthermore, the MIP selectivity was evaluated by checking several substances with similar and different molecular structures to that of pirimicarb. As an application, pirimicarb was determined in water samples of diverse origin which were spiked at a concentration level of 71.5 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号