首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two procedures to characterise atmospheres in piggeries are presented. The first allows delocalised sensorial analysis by trapping volatiles from pig shed emissions in a lipid phase. followed by laboratory analysis of their odour characteristics. The second procedure provides instrumental odour signatures of atmospheres. The volatile compounds are concentrated by solid-phase microextraction (SPME). and analysed directly by mass spectrometry without a chromatographic step (SPME-MS). The information supplied by the two analysis methods proved rich and consistent for the 42 piggeries analysed. In addition. the odour signatures allowed a good estimation of the key dimensions of the odour of the lipid phases. This result indicates that SPME-MS is a promising instrumental method to estimate the degree of odour nuisance in livestock buildings.  相似文献   

2.
The on-fibre derivatisation of volatile fatty acids (VFAs) using N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was optimised in the simultaneous determination of VFAs together with phenols and indoles by headspace solid-phase microextraction (SPME)–gas chromatography–mass spectrometry. Firstly, the nature of the SPME fibre was optimised and four different fibres were studied (100 μm polydimethylsiloxane, 85 μm Carboxen/polydimethylsiloxane, 5/30 μm divinylbenzene/Carboxen/polydimethylsiloxane and 85 μm polyacrylate). The optimum fibre (50/30 μm divinylbenzene/Carboxen/polydimethylsiloxane) was used to study the exposure time of the fibre to the derivatisation agent and the desorption time and temperature. Firstly, a factorial design was built but since the three variables had a significant effect, a central composite design was used to build the response surfaces. The best signals were obtained after the exposure of the fibre in the headspace of the MTBSTFA derivatisation reagent for 1 h and desorption at 300 °C for 9 min. The determination of underivatised phenols and indoles was not affected by the presence of the derivatisation reagent in the fibre.  相似文献   

3.
Various sampling techniques including flash evaporation (FE), headspace solid-phase microextraction (HS-SPME) and steam distillation (SD) were compared for the gas chromatography-mass spectrometry of volatile constituents present in Houttuynia cordata Thunb (HCT). 2-Undecanone (22.21%) and houttuynum (7.23%) were predominant components of HCT samples obtained by HS-SPME whereas those levels were 3.95 and 3.60% in the same samples by FE and 25.93 and 6.60% in those by SD, respectively. SPME with polydimethylsiloxane (PDMS) fibre was more selective and particularly efficient for the isolation of biologically active compounds and afforded a higher yield of total compounds than FE and SD. A total of 60 compounds were detected in SPME extracts. While in FE and SD extracts, the detected compounds were 41 and 51, respectively. The total amount of compounds isolated by SPME was much larger than that isolated by FE or SD. Some minor constituents were isolated by SPME, but not by SD and FE. This carries great significance because of the importance of the oil volatiles to clinical therapy. HS-SPME is a powerful tool for determining the volatile constitutes present in the TCMs.  相似文献   

4.
A suitable analytical procedure based on static headspace solid-phase microextraction (SPME) followed by thermal desorption gas chromatography-ion trap mass spectrometry detection (GC-(ITD)MS), was developed and applied for the qualitative and semi-quantitative analysis of volatile components of Portuguese Terras Madeirenses red wines. The headspace SPME method was optimised in terms of fibre coating, extraction time, and extraction temperature. The performance of three commercially available SPME fibres, viz. 100 mum polydimethylsiloxane; 85 mum polyacrylate, PA; and 50/30 mum divinylbenzene/carboxen on polydimethylsiloxane, was evaluated and compared. The highest amounts extracted, in terms of the maximum signal recorded for the total volatile composition, were obtained with a PA coating fibre at 30 degrees C during an extraction time of 60 min with a constant stirring at 750 rpm, after saturation of the sample with NaCl (30%, w/v). More than sixty volatile compounds, belonging to different biosynthetic pathways, have been identified, including fatty acid ethyl esters, higher alcohols, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, and monoterpenols/C(13)-norisoprenoids.  相似文献   

5.
Head-space solid phase microextration (SPME), followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS), has been implemented for the analysis of honey volatiles, with emphasis on the optimal selection of SPME fibre and the first- and second-dimension GC capillaries. From seven SPME fibres investigated, a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50/30 microm fibre provided the best sorption capacity and the broadest range of volatiles extracted from the headspace of a mixed honey sample. A combination of DB-5ms x SUPELCOWAX 10 columns enabled the best resolution of sample components compared to the other two tested column configurations. Employing this powerful analytical strategy led to the identification of 164 volatile compounds present in a honey mixture during a 19-min GC run. Combination of this simple and inexpensive SPME-based sampling/concentration technique with the advanced separation/identification approach represented by GCxGC-TOFMS allows a rapid and comprehensive examination of the honey volatiles profile. In this way, the laboratory sample throughput can be increased significantly and, at the same time, the risk of erroneous identification, which cannot be avoided in one-dimensional GC separation, is minimised.  相似文献   

6.
A piece of fused-silica fibre coated with silica modified with ketamine-groups was used as a solidphase microextraction (SPME) fibre and its efficiency in the qualitative and quantitative analysis of volatile organic compounds released from coloured overprinting on DVDs was evaluated. The effect of the parameters that can affect the SPME procedure, such as extraction time, extraction temperature, desorption temperature, was investigated to determine the analytical performance of this novel fibre in the qualitative and quantitative analyses of organic compounds. The optimised procedure was applied to the qualitative and quantitative analyses of organic compounds released from coloured overprinting on DVDs. The limit of detection of 4-methoxyphenol (mequinol) was 88 × 10−3 μg mL−1, while the limit of quantification (LOQ) was calculated as ten times the baseline noise, i.e. 3.1 × 10−1 μg mL−1. The proposed fibre was used successfully for preconcentration of the volatile organic compounds from the gaseous phase of DVD samples.  相似文献   

7.
Odorous organic compounds from liquid and gas samples of animal wastes were studied by headspace (HS)-solid-phase microextraction (SPME)-GC-MS. 1-Pirenyldiazomethane (PDAM) was adsorbed/absorbed on the SPME fibre in order to obtain the corresponding ester derivatives during the preconcentration step. The SPME fibre was immersed into a PDAM solution. Then, the SPME fibre was withdrawn and exposed to the HS of the liquid cow slurry. This way derivatisation of VFAs took place in the SPME fibre together with the preconcentration of the rest of the analytes of interest. The analytes were desorbed in the hot injection port (300 degrees C) of a GC-MS for 3 min. Four different fibre types and different immersion periods of the fibre in the PDAM solution were studied in order to obtain the best sensitivity with the selected fibre. Accuracy, precision and the LODs were calculated using spiked liquid and gas samples. The possibility of storing liquid samples after sampling by preconcentration on the fibre was also considered. Storage time and temperature were studied. The optimised method was applied to the determination of the analytes in liquid and gas samples from cow slurries from an intensive production farm.  相似文献   

8.
The aim of this study was to quantify, in a single analysis, 31 volatile fermentation-derived products that contribute to the aroma of red and white wine. We developed a multi-component method based on headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC-MS). The 31 volatile compounds analysed include ethyl esters, acetates, acids and alcohols. Although these compounds have a range of functional groups, chemical properties, volatilities, affinities for the SPME fibre, and are found in wine at various concentrations, the accuracy of the analysis was achieved with the use of polydeuterated internal standards for stable isotope dilution analyses (SIDA). Nine of the labelled standards were commercially available, while 22 were synthesised. The method was validated by a series of duplicate spiked standard additions to model, white and red wine matrices over the concentration range relevant for each compound in wine. This demonstrated that the appropriate use of SIDA helped to account for matrix effects, for instance potential sources of variation such as the relative response to the MS detector, ionic strength, ethanol content and pH of different wine matrices. The resultant calibration functions had correlation coefficients (R2) ranging from 0.995 to 1.000. Each compound could be quantified at levels below its aroma threshold in wine. Relative standard deviations were all <5%. The method was optimised for the best compromise (over the 31 compounds) of wine dilution factor, level of sodium chloride addition, SPME fibre, SPME temperature, SPME time, GC column and MS conditions. Confirmation of identity was achieved by retention time and peak shape, and measurement of at least three ions for each analyte and internal standard with the MS operating in selected ion monitoring mode to facilitate more precise quantitation with a high sampling rate. The method is a valuable research tool with many relevant applications. A novel method for the combined chiral separation and SIDA quantification of 2- and 3-methylbutanoic acid is also demonstrated.  相似文献   

9.
《Analytical letters》2012,45(3):422-432
The composition of the essential oil isolated from the fresh and dry leaves of Ducrosia flabellifolia Boiss. (Apiaceae) was determined by gas chromatography and gas chromatography–mass spectrometry using hydrodistillation and solid phase microextraction (SPME). The hydrodistilled oil of the fresh leaves yielded 38 components, accounting for 98.67% of the total oil content, while thirty components were detected from the fresh leaves by solid phase microextraction (94.85%). Fifty-one and 36 components were identified in the hydrodistilled and SPME oils of the dried leaves amounting to 98.78% and 94.52%, respectively. A total of 25 components accounting for 97.24% of the total composition were characterized in the SPME oil of the fresh flowers. Aliphatic compounds predominated in the volatile fractions of the leaves and flowers of both methods with n-decanol, n-decanal, and dodecanal as the main constituents. The α- and ß-pinene were the major monoterpenoids in the oils. The hydrodistilled oil was screened for its antimicrobial and antioxidant activities. The minimal inhibitory concentration of the volatile oil was determined using a microdilution method in 96 well plates against a panel of gram (+), gram (?) bacteria, and fungi. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were used as test microorganisms. The oil exhibited the best activity against C. albicans (MIC 234 µg/mL) and S. aureus (MIC 234 µg/mL) whereas weak activity was detected against E. coli and P. aeruginosa. No antioxidant activity could be detected.  相似文献   

10.
In this work, a highly porous fibre coated with polythiophene/hexagonally ordered silica nanocomposite (PT/SBA-15) was prepared and used for extraction of essential oils with microwave-assisted distillation headspace solid phase microextraction (MA-HS-SPME) method. The prepared nanomaterials were immobilised on a stainless steel wire for fabrication of the SPME fibre. Using MA-HS-SPME followed by GC-MS, 24 compounds were separated and identified in Achillea tenuifolia, which mainly included limonene (28.6%), α-cadinol (12.7%), borneol (6.7%), caryophyllene oxide (3.2%), bornyl acetate (4.3%), camphene (3.2%) and para-cymene (2.3%). The experimental results showed that the polythiophene/hexagonally ordered silica nanocomposite fibres were suitable for the semi-quantitative study of the composition of essential oils in plant materials and for monitoring the variations in the volatile components of the plants.  相似文献   

11.
The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 g/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 g/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.  相似文献   

12.
Machiels D  Istasse L 《Talanta》2003,61(4):529-537
The aroma profile of cooked beef meat has been investigated by solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS). Out of more than 200 volatile compounds, 36 key odour-active compounds were selected for analysis. Several extraction times, desorption times, temperature conditions and fibre types were tested to achieve a fast and reproducible extraction, and a representative analysis of the aroma profile of cooked beef. Extraction conditions and fibre type significantly affected the majority of the target compounds. Divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fibre presented a better reproducibility at all extraction times and extracted more efficiently the less volatile compounds than the carboxen-polydimethylsiloxane (CAR-PDMS) fibre. The high molecular weight compounds seemed to achieve faster the equilibrium between the headspace and DVB-CAR-PDMS fibre. The use of SPME was shown to be a simple, sensitive, selective, representative, fast, and low-cost method for the evaluation of key odour-active compounds in cooked beef meat, even if further research on quantitative analysis of volatiles using SPME on solid samples has to be done.  相似文献   

13.
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.  相似文献   

14.
In this paper, for the first time, an inorganic–organic hybrid material based on ZnO nanoparticles was anchored to a composite made from polythiophene and hexagonally ordered silica (ZnO/PT/SBA-15) for use in solid-phase fibre microextraction (SPME) of medicinal plants. A homemade SPME apparatus was used for the extraction of volatile components of Ziziphora tenuior L. A simplex method was used for optimisation of five different parameters affecting the efficiency of the extraction. The main constituents extracted by ZnO/PT/SBA-15 and PDMS fibres and hydrodistillation (HD) methods, respectively, included pulegone (51.25%, 53.64% and 56.68%), limonene (6.73%, 6.58% and 8.3%), caryophyllene oxide (5.33%, 4.31% and 4.53%) and 1,8-cineole (4.21%, 3.31% and 3.18%). In comparison with the HD method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, in a shorter time and requiring a much lower amount of the sample.  相似文献   

15.
Nanoporous silica was prepared and functionalized with amino propyl‐triethoxysilane to be used as a highly porous fiber‐coating material for solid‐phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave‐assisted extraction followed by headspace (HS) solid‐phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave‐assisted distillation HS‐SPME followed by GC‐MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans‐β‐Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample.  相似文献   

16.
A monolithic solid-phase microextraction (SPME) fibre was fabricated based on a molecularly imprinted polymer that could be coupled with gas chromatography for extraction, and determination of chlorpyrifos. The time of extraction, pH, temperature and ionic strength were investigated as important factors on the extraction procedure. The fabricated fibre was firm, inexpensive, stable and selective which gave it vital importance in SPME. The selectivity of the fabricated fibre in relation to analogue compounds was also investigated. Under the optimum conditions, the calibration curve was linear in the range of 1–20 mg L?1 (R2 = 0.9899). The high extraction efficiency was obtained for chlorpyrifos with a detection limit of 0.23 mg L?1. The fabricated fibre was successfully applied to SPME of chlorpyrifos from apple and grape fruits after its extraction and followed by gas chromatography-flame ionisation detector analysis.  相似文献   

17.
The success of in vivo solid phase microextraction (SPME) depends significantly on the selection of calibration method. Three kinetic in vivo SPME calibration methods are evaluated in this paper: (1) on-fibre standardization (OFS), (2) dominant pre-equilibrium desorption (DPED), and (3) the diffusion-based interface (DBI) model. These are compared in terms of precision, accuracy, and ease of experimental use by employing a flow device simulating an animal circulatory system. In addition, the kinetic calibration methods were validated against established SPME equilibrium extraction (EE) external calibration and a conventional sample preparation method involving protein precipitation. The comparison was performed using a hydrophilic drug fenoterol as the analyte of interest. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for the determinations. All three kinetic methods compared well with both EE extraction and the conventional method in terms of accuracy (93-119%). In terms of precision, the DBI model had the best precision in whole blood and buffered phosphate saline solution with %RSD similar to the standard techniques (9-15%). DPED had the poorest precision of %RSD (20-30%) possibly due to errors associated with uncertainty in the amount of standard loaded on-fibre and remaining on the fibre after desorption. In addition, incurred errors could result due to the greater number of fibres used in comparison to the other two calibration methods. The precision of the OFS procedure was better than for DPED primarily because the use of multiple fibres is eliminated. In terms of the ease of use for calibration, the DBI model was the simplest and most convenient as it did not require standards once it had been calibrated or the uptake constant was calculated. This research suggests the potential use of DBI model as the best kinetic calibration method for future in-vein blood SPME investigations.  相似文献   

18.
Quantitative properties of solid-phase microextraction (SPME) have been studied in order to investigate a simple and reliable method for analysing volatile flavour components in strawberries. Monitoring the chemical composition profile of berries will be of interest for the producers in order to optimise growth and storage conditions. By the use of SPME and capillary gas chromatography selected standard components were quantified with accuracy within +/-7% and a linear response were found in all concentration ranges studied, covering three orders of magnitude. Equilibrium constants that describe how various components are distributed between the three phases present, sample, headspace and fibre coating were determined. In the system studied, the majority of analytes remained in the sample. This means that repeated analysis can be performed from a single sample without significantly changing the results. The mass transfers of the flavour components, from the sample and into the fibre, were fitted to a transport model assuming that the rate-controlling step is diffusion within the fibre. The experimental results agreed well with the model for most of the components studied. The response for three of the components (geraniol, linalool and trans-2-hexenyl butanoate) did not agree with the model. These components were present in the gas phase in only minute amounts explaining the deviation from the model. Such components will require a long absorption time (longer than 30 min). For quantitative analysis, it is important to use a very precise pre-determined absorption period and well defined sampling conditions. Internal standards can be omitted.  相似文献   

19.
Furan may be formed in food under heat treatment and is highly suspected to appear in indoor air. The possible exposure to indoor furan raises concerns because it has been found to cause carcinogenicity and cytotoxicity in animals. To determine airborne furan, solid-phase microextraction (SPME) technique was utilised as a diffusive sampler. The Carboxen/Polydimethylsiloxane (CAR/PDMS, 75 μm) fibre was used, and the SPME fibre assembly was inserted into a polytetrafluoroethene tubing. Furan of known concentrations was generated in Tedlar gas bags for the evaluation of SPME diffusive samplers. After sampling, the sampler was inserted into the injection port of a gas chromatograph coupled with a mass spectrometer (GC/MS) for thermal desorption and analysis. Validation of the SPME device with active sampling by charcoal tube was performed side by side as well. The charcoal tube was desorbed by acetone before analysis with GC/MS. The experimental sampling constant of the sampler was found equal to (9.93 ± 1.28) × 10?3 (cm3 min?1) at 25°C. Furthermore, side-by-side validations between SPME device and charcoal tube showed linear relationship with r = 0.9927. The designed passive sampling device for furan has the advantages of both passive sampling and SPME technique and looks suitable for assessing indoor air quality.  相似文献   

20.
The headspace solid-phase microextraction (HS-SPME) efficiencies from vegetable oil of the recently available Carboxen-poly(dimethylsiloxane) (PDMS) and divinylbenzene-Carboxen-PDMS fibres were found to be much greater than those of the PDMS fibre for a number of volatile contaminants. Using these Carboxen-based fibres, the commonly used HS-SPME equilibration times for aqueous matrices of 30-45 min at room temperature for a number of halogenated and aromatic analytes with volatilities ranging from 1,1-dichloroethylene to hexachlorobenzene were found to be insufficient for the effective extraction of the less volatile analytes from vegetable oil. HS-SPME at 100 degrees C for 45 min, followed by rapid cooling to 0 degrees C with a 10 min continuing extraction, however, significantly increased the SPME efficiencies for the less volatile analytes. Spiking solutions were prepared in vegetable oil instead of methanol as the latter was found to displace analytes from the Carboxen material. Using either of the Carboxen-based fibres and SPME at 100 degrees C, all the target analytes could be determined at low or sub-microg kg(-1) with repeatability < or =10%, even though an equilibrium SPME of the less volatile analytes was not achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号