首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We present LDA band structure of novel hole doped high temperature superconductors (T c ∼ 30 K) K x Fe2Se2 and Cs x Fe2Se2 and compare it with previously studied electronic structure of isostructural FeAs superconductor BaFe2As2 (Ba122). We show that stoichiometric KFe2Se2 and CsFe2Se2 have rather different Fermi surfaces as compared with Ba122. However at about 60% of hole doping Fermi surfaces of novel materials closely resemble those of Ba122. In between these dopings we observe a number of topological Fermi surface transitions near the Γ point in the Brillouin zone. Superconducting transition temperature T c of new systems is apparently governed by the value of the total density of states (DOS) at the Fermi level.  相似文献   

2.
The electronic structure of the recently discovered superconductor SrPt2As2 with T c = 5.2 K has been calculated in the local-density approximation. Despite its chemical composition and crystal structure are somehow similar to FeAs-based high-temperature superconductors, the electronic structure of SrPt2As2 is very much different. The crystal structure is orthorhombic (or tetragonal if idealized) and has layered nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr ions. The Fermi level is crossed by Pt-5d states with rather strong admixture of As-4p states. Fermi surface of SrPt2As2 is essentially three-dimensional, with complicated sheets corresponding to multiple bands. We compare SrPt2As2 with 1111 and 122 representatives of FeAs-class of superconductors, as well as with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of superconductivity in SrPt2As2 is also presented.  相似文献   

3.
The electronic structure of cerium systems, the hybridization of 4 f and outer-shell electrons, and the influence of the position of the localized 4 f level with respect to the Fermi level E F in the conduction band have been investigated. The CeCu6, CePd3, CeSi2, and CeF3 systems have been studied using X-ray photoelectron spectroscopy. The densities of states have been calculated by the tight-binding linearized muffin-tin orbital method within the atomic sphere approximation, which takes into account the covalent character of bonds and the nonspherical distribution of the electron density. The results obtained from the calculations of the total density of states are in good agreement with the valence band X-ray photoelectron data for the systems under investigation. It has been shown that the differences in the properties of the cerium systems are determined by the specific features of their electronic structure. A strong interatomic interaction is characteristic of heavy-fermion systems.  相似文献   

4.
Ab initio calculations were performed to investigate the electronic structure and the Fermi surface of the newly discovered low-temperature superconductor: fluorine-doped WO3. We find that F doping provides the transition of the insulating tungsten trioxide into a metallic-like phase WO3 − x F x , where the near-Fermi states are formed mainly from W 5d with admixture of O 2p orbitals. The cooperative effect of fluorine additives in WO3 consists in change of electronic concentration as well as the lattice constant. At probing their influence on the near-Fermi states separately, the dominant role of the electronic factor for the transition of tungsten oxyfluoride into superconducting state was established. The volume of the Fermi surface gradually increases with the increase of the doping. In the sequence WO3 → WO2.5F0.5 the effective atomic charges of W and O ions decrease, but much less, than it is predicted within the idealized ionic model—owing to presence of the covalent interactions W-O and W-F.  相似文献   

5.
The results of the theoretical investigation of the surface electronic structure of A2VB3VI compounds containing topologically protected surface states are reported. The ideal Bi2Te3, Bi2Se3, and Sb2Te3 surfaces and surfaces with an absent external layer of chalcogen atoms, which were observed experimentally as monolayer terraces, have been considered. It has been shown that the discrepancy between the calculated Fermi level and the value measured in the photoemission experiments can be attributed to the presence of the “dangling bond” states on the surface of the terraces formed by semimetal atoms. The fraction of such terraces on the surface has been estimated.  相似文献   

6.
The results of ab initio FLAPW-GGA computations of the band structure of two new layered low-temperature superconductors BaRh2P2 and BaIr2P2 (with a ThCr2Si2 tetragonal structure) are presented. As distinct from the family of the isostructural FeAs superconductors, they feature the complete replacement of the magnetic (Fe) metal by the nonmagnetic 4d (Rh) and 5d (Ir) metals. For BaRh2P2 and BaIr2P2, the energy bands, the distributions of the densities of electronic states, the Fermi surface topology, and the coefficients of the low-temperature electron specific heat and the molar Pauli paramagnetic susceptibility have been determined. An increase in T C in the BaRh2P2 (1 K) → BaIr2P2 (2.1 K) transition can assumingly be attributed to the features of their phonon subsystem.  相似文献   

7.
The specific heats of the amorphous systems Ni44Nb56, Ni62Nb38, and Cu33Zr67 were studied in the temperature range 3–273 K. The data obtained allow one to isolate the contribution due to atomic vibrations from the experimentally measured specific heat, to determine the density of electronic states at the Fermi level and the temperature dependence of the characteristic Debye parameter Θ over a broad temperature range, and to calculate a few frequency moments that characterize the vibrational spectrum. The information derived on the average characteristics of vibrational spectra is in good agreement with earlier data on inelastic neutron scattering. In transferring from Ni44Nb56 to Ni62Nb38, the density of electronic states at the Fermi level decreases and the characteristic vibrational frequencies increase. The density of electronic states at the Fermi level for Cu33Zr67 is close to that for Ni62Nb38. The characteristic frequencies of the vibrational spectrum of the Cu33Zr67 system are substantially lower (by 30%) than those of the Ni44Nb56 and Ni62Nb38 systems.  相似文献   

8.
According to the results of calorimetric and structural studies, the Fm{ie1202-1}m phase in K2NaMoO3F3 remains stable at least to 100 K. No ferroelectric transformation assumed earlier has been revealed in a series of Rb2KMoO3F3 samples prepared using various technologies. Only a phase transition of nonferroelectric origin has been observed near 195 K, and its thermodynamic characteristics have been determined. An analysis of the stability of the cubic structure of molybdenum fluorine-oxygen elpasolites-cryolites has been performed in the framework of the hypothesis on strengths of interatomic bonds. The barocaloric effect in Rb2KMoO3F3 has been estimated.  相似文献   

9.
Using a full-potential method of attaching plane waves, the electronic structure of Al 2 O 3 is calculated in a corundum structure in the bulk and on the surface (0001). It is shown that the calculations consistently reproduce the properties with respect to the experiment. The effect of surface relaxation on the structure of subsurface states is discussed. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 20–25, November, 2005.  相似文献   

10.
We systematically study the structural, electronic, and magnetic properties of chromium sulfide Y2CrS4 by using density-functional theory. We find that antiferromagnetic order is more energetically favorable than ferromagnetic state and near the Fermi level the main occupation is from Cr 3d states.  相似文献   

11.
Ellipsometric investigations of the optical properties of Ru2Ge3 and Ru2Sn3 intermetallic compounds are carried out in the wavelength range from 0.22 to 15 μm. The nature of interband light absorption is analyzed based on a comparative analysis of the experimental and theoretical frequency dependences of an optical conductivity. The obtained results confirm the existence of energy gaps at the Fermi level in the electronic spectra of these materials predicted earlier by the band-structure calculations.  相似文献   

12.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

13.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is anti-ferromagnetic with T Nexp ∼ 250 K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered “plaquettes” or “zigzags”), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show τ1 (plaquettes) spin configuration to be more favorable than τ2 (zigzags).  相似文献   

14.
The specific features of the electronic and spin structures of a triple topological insulator Bi2Te2.4Se0.6, which is characterized by high-efficiency thermoelectric properties, have been studied with the use of angular- and spin-resolved photoelectron spectroscopy and compared with theoretical calculations in the framework of the density functional theory. It has been shown that the Fermi level for Bi2Te2.4Se0.6 falls outside the band gap and traverses the topological surface state (the Dirac cone). Theoretical calculations of the electronic structure of the surface have demonstrated that the character of distribution of Se atoms on the Te–Se sublattice practically does not influence the dispersion of the surface topological electronic state. The spin structure of this state is characterized by helical spin polarization. Analysis of the Bi2Te2.4Se0.6 surface by scanning tunnel microscopy has revealed atomic smoothness of the surface of a sample cleaved in an ultrahigh vacuum, with a lattice constant of ~4.23 Å. Stability of the Dirac cone of the Bi2Te2.4Se0.6 compound to deposition of a Pt monolayer on the surface is shown.  相似文献   

15.
We have performed ab initio LDA calculations of the electronic structure of newly discovered prototype high-temperature superconductors AFe2As2 (A = Ba, Sr) and compared it with the previously calculated electronic spectra of ReOFeAs (Re = La, Ce, Pr, Nd, Sm). In all cases, we obtain almost identical densities of states in a rather wide energy interval (up to 1 eV) around the Fermi level. Energy dispersions are also very similar and almost two dimensional in this energy interval, leading to the same basic (minimal) model of the electronic spectra, determined mainly by Fe d orbitals of the FeAs layers. The other constituents, such as A ions or rare-earth Re (or oxygen states) are more or less irrelevant for superconductivity. LDA Fermi surfaces for AFe2As2 are also very similar to that of ReOFeAs. This makes the more simple AFe2As2 a generic system to study the high-temperature superconductivity in FeAs-layered compounds. The text was submitted by the authors in English.  相似文献   

16.
Co3O2BO3 and Co2FeO2BO3 single crystals with a ludwigite structure are fabricated, and their crystal structure and magnetic properties are studied in detail. Substituted ludwigite Co2FeO2BO3 undergoes two-stage magnetic ordering at the temperatures characteristic of Fe3O2BO3 (T N1 ≈ 110 K, T N2 ≈ 70 K) rather than Co3O2BO3 (T N = 42 K). This effect is explained in terms of preferred occupation of nonequivalent crystallographic positions by iron, which was detected by X-ray diffraction. Both materials exhibit a pronounced uniaxial magnetic anisotropy. Crystallographic direction b is an easy magnetization axis. Upon iron substitution, the cobalt ludwigite acquires a very high magnetic hardness.  相似文献   

17.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

18.
Ab initio calculations were performed to investigate electronic and elastic properties of the newly discovered 7.5 K superconductor: layered Nb2InC. As a result, electronic bands, total and site-projected l—decomposed density of states at the Fermi level, shape of the Fermi surface for Nb2InC were obtained for the first time. Besides, independent elastic constants, bulk modulus, compressibility, shear modulus, Young’s modulus, Poisson’s ratio together with the elastic anisotropy parameters and indicator of brittle/ductile behavior of Nb2InC were evaluated and analyzed in comparison with the available data.  相似文献   

19.
First principle FLAPW-GGA calculations have been performed with the purpose to understand the effect of Ti-doping on the electronic properties for the newly discovered tetragonal iron arsenide-oxide Sr4Sc2Fe2As2O6 (abbreviated as FeAs42226) as the possible parent phase for the new FeAs superconductors. Our results show that the insertion of Ti into Sc sublattice of this five-component iron arsenide-oxide phase leads to the resolute change of electronic structure of FeAs42226. Namely, the insulating oxygen-containing [Sr4Sc2O6] blocks in Ti-doped FeAs42226 became conducting, and this differs essentially from the known picture for all others FeAs superconductors where the conducting [Fe2As2] blocks are alternated with insulating blocks. Moreover in sharp contrast with FeAs-based superconductors with Fe 3d bands near the Fermi level, for Ti-doped FeAs42226 in this region the Ti 3d states are dominated, whereas the Fe 3d states are suppressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号