首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inverse multi-objective combinatorial optimization consists of finding a minimal adjustment of the objective functions coefficients such that a given set of feasible solutions becomes efficient. An algorithm is proposed for rendering a given feasible solution into an efficient one. This is a simplified version of the inverse problem when the cardinality of the set is equal to one. The adjustment is measured by the Chebyshev distance. It is shown how to build an optimal adjustment in linear time based on this distance, and why it is right to perform a binary search for determining the optimal distance. These results led us to develop an approach based on the resolution of mixed-integer linear programs. A second approach based on a branch-and-bound is proposed to handle any distance function that can be linearized. Finally, the initial inverse problem is solved by a cutting plane algorithm.  相似文献   

3.
Maximal vectors and multi-objective optimization   总被引:3,自引:0,他引:3  
Maximal vector andweak-maximal vector are the two basic notions underlying the various broader definitions (like efficiency, admissibility, vector maximum, noninferiority, Pareto's optimum, etc.) for optimal solutions of multi-objective optimization problems. Moreover, the understanding and characterization of maximal and weak-maximal vectors on the space of index vectors (vectors of values of the multiple objective functions) is fundamental and useful to the understanding and characterization of Pareto-optimal and weak-optimal solutions on the space of solutions.This paper is concerned with various characterizations of maximal and weak-maximal vectors in a general subset of the EuclideanN-space, and with necessary conditions for Pareto-optimal and weak-optimal solutions to a generalN-objective optimization problem having inequality, equality, and open-set constraints on then-space. A geometric method is described; the validity of scalarization by linear combination is studied, and weak conditioning by directional convexity is considered; local properties and a fundamental necessary condition are given. A necessary and sufficient condition for maximal vectors in a simplex or a polyhedral cone is derived. Necessary conditions for Pareto-optimal and weak-optimal solutions are given in terms of Lagrange multipliers, linearly independent gradients, Jacobian and Gramian matrices, and Jacobian determinants.Several advantages in approaching the multi-objective optimization problem in two steps (investigate optimal index vectors on the space of index vectors first, and study optimal solutions on the specific space of solutions next) are demonstrated in this paper.This work was supported by the National Science Foundation under Grant No. GK-32701.  相似文献   

4.
A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Many classical optimization problems, such as maximum spanning tree and forest, shortest path, maximum weight (perfect) matching, maximum weight independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. Not much is known however about the case of two or more budgets: filling this gap, at least partially, is the main goal of this paper. In more detail, we obtain the following main results: Using iterative rounding for the first time in multi-objective optimization, we obtain multi-criteria PTASs (which slightly violate the budget constraints) for spanning tree, matroid basis, and bipartite matching with \(k=O(1)\) budget constraints. We present a simple mechanism to transform multi-criteria approximation schemes into pure approximation schemes for problems whose feasible solutions define an independence system. This gives improved algorithms for several problems. In particular, this mechanism can be applied to the above bipartite matching algorithm, hence obtaining a pure PTAS. We show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a deterministic approximation scheme for \(k\) -budgeted matroid independent set. We present a deterministic approximation scheme for \(k\) -budgeted matching (in general graphs), where \(k=O(1)\) . Interestingly, to show that our procedure works, we rely on a non-constructive result by Stromquist and Woodall, which is based on the Ham Sandwich Theorem.  相似文献   

5.
A multi-level solution method is presented for multi-objective optimization of large-scale systems associated with the hierarchical structure of decision-making. The method, consisting of a multi-level problem formulation and an interactive algorithm, has distinct advantages in handling the difficulties which are often experienced in engineering. The method is illustrated by its application to an optimal design of a processing system.  相似文献   

6.
Pareto dominance is one of the most basic concepts in multi-objective optimization. However, it is inefficient when the number of objectives is large because in this case it leads to an unmanageable number of Pareto solutions. In order to solve this problem, a new concept of logic dominance is defined by considering the number of improved objectives and the quantity of improvement simultaneously, where probabilistic logic is applied to measure the quantity of improvement. Based on logic dominance, the corresponding logic nondominated solution is defined as a feasible solution which is not dominated by other ones based on this new relationship, and it is proved that each logic nondominated solution is also a Pareto solution. Essentially, logic dominance is an extension of Pareto dominance. Since there are already several extensions for Pareto dominance, some comparisons are given in terms of numerical examples, which indicates that logic dominance is more efficient. As an application of logic dominance, a house choice problem with five objectives is considered.  相似文献   

7.
Subset simulation is an efficient Monte Carlo technique originally developed for structural reliability problems, and further modified to solve single-objective optimization problems based on the idea that an extreme event (optimization problem) can be considered as a rare event (reliability problem). In this paper subset simulation is extended to solve multi-objective optimization problems by taking advantages of Markov Chain Monte Carlo and a simple evolutionary strategy. In the optimization process, a non-dominated sorting algorithm is introduced to judge the priority of each sample and handle the constraints. To improve the diversification of samples, a reordering strategy is proposed. A Pareto set can be generated after limited iterations by combining the two sorting algorithms together. Eight numerical multi-objective optimization benchmark problems are solved to demonstrate the efficiency and robustness of the proposed algorithm. A parametric study on the sample size in a simulation level and the proportion of seed samples is performed to investigate the performance of the proposed algorithm. Comparisons are made with three existing algorithms. Finally, the proposed algorithm is applied to the conceptual design optimization of a civil jet.  相似文献   

8.
本文首先利用松弛变量和广义Tchebycheff范数的推广形式提出一类新的标量化优化问题.进一步,通过调整几种参数范围获得一般多目标优化问题弱有效解、有效解和真有效解的一些完全标量化刻画.此外,本文提出例子对主要结果进行说明,利用相应的标量化方法判定给定的多目标优化问题的可行解是否是弱有效解、有效解和真有效解.  相似文献   

9.
Multi-objective bi-level optimization(MOBLO) addresses nested multi-objective optimization problems common in a range of applications. However, its multi-objective and hierarchical bi-level nature makes it notably complex. Gradient-based MOBLO algorithms have recently grown in popularity, as they effectively solve crucial machine learning problems like meta-learning, neural architecture search, and reinforcement learning. Unfortunately, these algorithms depend on solving a sequence of approximat...  相似文献   

10.
In real-world applications of optimization, optimal solutions are often of limited value, because disturbances of or changes to input data may diminish the quality of an optimal solution or even render it infeasible. One way to deal with uncertain input data is robust optimization, the aim of which is to find solutions which remain feasible and of good quality for all possible scenarios, i.e., realizations of the uncertain data. For single objective optimization, several definitions of robustness have been thoroughly analyzed and robust optimization methods have been developed. In this paper, we extend the concept of minmax robustness (Ben-Tal, Ghaoui, & Nemirovski, 2009) to multi-objective optimization and call this extension robust efficiency for uncertain multi-objective optimization problems. We use ingredients from robust (single objective) and (deterministic) multi-objective optimization to gain insight into the new area of robust multi-objective optimization. We analyze the new concept and discuss how robust solutions of multi-objective optimization problems may be computed. To this end, we use techniques from both robust (single objective) and (deterministic) multi-objective optimization. The new concepts are illustrated with some linear and quadratic programming instances.  相似文献   

11.
This paper investigates a fuzzy multi-objective vendor selection program under lean procurement based on cost minimization, delivery schedule violation minimization, and maximizing the quality level of the purchased quantity. Specifically, the paper incorporates the vendor production capacity uncertainty into the model to identify an appropriate selection policy for vendors under practical operating conditions. The use of a soft time-window mechanism for the vendor selection model enables decision makers to further incorporate a time based performance metric for vendor evaluation, based on the degree of urgency or need for a part. A solution algorithm using fuzzy AHP is proposed. The results of a numerical example suggest that decision makers prefer vendors who can promise tighter delivery schedules rather than on cost or quality. A sensitivity analysis of the soft time-window on the achievement of the lean procurement objectives is also conducted.  相似文献   

12.
《Optimization》2012,61(11):1295-1305
In this article, we are concerned with fractional multi-objective optimization problems. Since those problems are in general nonconvex problems even if the problem data are convex, using techniques from variational analysis especially the approximate extremal principle [B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series: Fundamental Principles of Mathematical Sciences, Vol. 330, Springer, Berlin, 2006; B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Series: Fundamental Principles of Mathematical Sciences, Vol. 331, Springer, Berlin, 2006], we develop fuzzy optimality conditions.  相似文献   

13.
This work discusses robustness assessment during multi-objective optimization with a Multi-Objective Evolutionary Algorithm (MOEA) using a combination of two types of robustness measures. Expectation quantifies simultaneously fitness and robustness, while variance assesses the deviation of the original fitness in the neighborhood of the solution. Possible equations for each type are assessed via application to several benchmark problems and the selection of the most adequate is carried out. Diverse combinations of expectation and variance measures are then linked to a specific MOEA proposed by the authors, their selection being done on the basis of the results produced for various multi-objective benchmark problems. Finally, the combination preferred plus the same MOEA are used successfully to obtain the fittest and most robust Pareto optimal frontiers for a few more complex multi-criteria optimization problems.  相似文献   

14.
Multi-objective evolutionary algorithms (MOEAs) are widely considered to have two goals: convergence towards the true Pareto front and maintaining a diverse set of solutions. The primary concern here is with the first goal of convergence, in particular when one or more variables must converge to a constant value. Using a number of well known test problems, the difficulties that are currently impeding convergence are discussed and then a new method is proposed that transforms the decision space using the geometric properties of hyper-spherical inversions to converge towards/onto the true Pareto front. Future extensions of this work and its application to multi-objective optimisation is discussed.  相似文献   

15.
In this paper several parameter dependent scalarization approaches for solving nonlinear multi-objective optimization problems are discussed. It is shown that they can be considered as special cases of a scalarization problem by Pascoletti and Serafini (or a modification of this problem). Based on these connections theoretical results as well as a new algorithm for adaptively controlling the choice of the parameters for generating almost equidistant approximations of the efficient set, lately developed for the Pascoletti-Serafini scalarization, can be applied to these problems. For instance for such well-known scalarizations as the ε-constraint or the normal boundary intersection problem algorithms for adaptively generating high quality approximations are derived.  相似文献   

16.
In recent decades, several multi-objective evolutionary algorithms have been successfully applied to a wide variety of multi-objective optimization problems. Along the way, several new concepts, paradigms and methods have emerged. Additionally, some authors have claimed that the application of multi-objective approaches might be useful even in single-objective optimization. Thus, several guidelines for solving single-objective optimization problems using multi-objective methods have been proposed. This paper offers a survey of the main methods that allow the use of multi-objective schemes for single-objective optimization. In addition, several open topics and some possible paths of future work in this area are identified.  相似文献   

17.
The paper presents a new genetic local search (GLS) algorithm for multi-objective combinatorial optimization (MOCO). The goal of the algorithm is to generate in a short time a set of approximately efficient solutions that will allow the decision maker to choose a good compromise solution. In each iteration, the algorithm draws at random a utility function and constructs a temporary population composed of a number of best solutions among the prior generated solutions. Then, a pair of solutions selected at random from the temporary population is recombined. Local search procedure is applied to each offspring. Results of the presented experiment indicate that the algorithm outperforms other multi-objective methods based on GLS and a Pareto ranking-based multi-objective genetic algorithm (GA) on travelling salesperson problem (TSP).  相似文献   

18.
19.
This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.  相似文献   

20.
A layered viscoelastic rectangular plate fiber-reinforced in three directions and compressed in one direction has been studied. Two plate properties, namely, the critical compressive stress cr and the coefficient of linear thermal expansion xx, were analyzed by varying two parameters of the reinforcement geometry. The properties of the plate are determined by the properties of the composite components, eight of which are considered stochastic. The problem was solved for two variants: xx min or xx max. The calculations were carried out for three time intervals: t = 0, 27 days, and . For t = 0, the region of t real plate properties is determined with isolines for design parameters. Multi-objective compromise solutions are given for all three times t for each of the two variants along with the parameters of the property scatter ellipses.Presented at the Ninth International Conference on Mechanics of Composite Materials, Riga, October, 1995.Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 3, pp. 363–369, May–June, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号