首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrodynamic cavitation is a powerful tool for the enhancement of various processing applications. This study utilizes continuous hydrodynamic cavitation (CHC) for the inactivation of pathogens in milk for the first time. The thermal characteristics, inactivation performance, damage on the nutritional composition, product safety, and cost of the advanced rotational hydrodynamic cavitation reactor at pilot scale were comprehensively investigated. The inactivation results demonstrated that 5.89, 5.53, and 2.99 ± 0.08 log reductions of Escherichia coli, Staphylococcus aureus, and Bacillus cereus were achieved, respectively, at a final treatment temperature of 70 °C for 1–2 s. Moreover, the detrimental effect of CHC on the nutritional composition of milk, including mineral, fat, protein, and vitamin contents, was similar to that of high-temperature short-time method. The change in the concentrations of general bacteria and E. coli, as well as the pH value and acidity of the CHC treated milk stored at 5 °C for 14 days was found to be close to that of low-temperature long-time pasteurized milk. The cost of the present CHC treatment was $0.00268/L with a production rate of 4.2 L/min. CHC appears to be a remarkable method for the continuous processing of milk, as well as other liquid foods with high nutrition and “fresh-picked” flavor, due to its high efficacy, good scalability, high production capacity, and low operating and equipment costs.  相似文献   

2.
A theoretical study of hydrodynamic cavitation   总被引:5,自引:0,他引:5  
The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.  相似文献   

3.
Managing environmental contamination with Benz[a]anthracene (B[a]A) is essential due to its carcinogenic, teratogenic and mutagenic effects on humans and the environment. At present, the mainly B[a]A degradation methods used are photodegradation, bioremediation and traditional advanced oxidation, although they all have disadvantages. In this study, B[a]A was degraded by hydrodynamic cavitation (HC), chlorine dioxide (ClO2), or an innovative combination of the two methods. According to high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC–MS) analysed the degradation products and degradation pathway of B[a]A, with the kinetics of different degradation methods discussed. Under optimal conditions, HC combined with ClO2 oxidation can further degrade products to achieve ring cleavage. Compared with the two separate degradation process methods, the combined method exerts a synergistic effect on the degradation of B[a]A, with an enhancement factor of 1.48. Experimental results showed that the combination method can realize enhanced complete degradation of B[a]A, reduce ClO2 requirements, improve efficiency, reduce energy consumption and produce less harmful products with ring cleavage achieved.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(3):1213-1221
In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50 °C; 15 min; 340 mg L−1 of added H2O2) resulted in removal efficiencies of 47–86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L−1) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive.  相似文献   

5.
The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7bar. Hydrodynamic cavitation had a maximum efficiency of about 5x10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8x10(-11)molJ(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.  相似文献   

6.
A parametrical study of disinfection with hydrodynamic cavitation   总被引:1,自引:0,他引:1  
The physical and chemical conditions generated by cavitation bubbles can be used to destroy microorganisms and disinfect wastewater. The effect of different cavitation chamber designs and diverse operational parameters on the inactivation rate of Escherichia coli have been studied and used to understand the mechanisms involved in cell disruption.  相似文献   

7.
Ammonia is a commonly used compound in the domestic and industrial fields. If ammonia found in wastewater after use is not treated, even at low concentrations it may cause toxic effects in the receiving environment. In this study, a hydrodynamic cavitation reactor (HDC) was designed with the aim of removing ammonia. The effect of parameters like different cavitation numbers, airflow, temperature and initial concentration on NH3 removal was researched. The potential of hydrodynamic cavitation for removal of volatile gases, like NH3, was assessed with the aid of two film theory mathematical equations. Experimental studies were performed at fixed pH = 11. Under the conditions of 0.12 cavitation number, 25 L/min airflow, 30 °C temperature and 2500 mg/L initial concentration, in 24 h 98.4% NH3 removal efficiency was achieved. With the same experimental conditions without any air, the HDC reactor provided 89.5% NH3 removal at the end of 24 h.The HDC reactor is very effective for the removal of volatile gases from wastewater and it was concluded that even in the absence of aeration, the desired NH3 removal efficiency was provided.  相似文献   

8.
Hydrodynamic cavitation (HC) has emerged as one of the most potential technologies for industrial-scale water treatment. The advanced rotational hydrodynamic cavitation reactors (ARHCRs) that appeared recently have shown their high effectiveness and economical efficiency compared with conventional devices. For the interaction-type ARHCRs where cavitation is generated from the interaction between the cavitation generation units (CGUs) located on the rotor and the stator, their flow field, cavitation generation mechanism, and interaction process are still not well defined. The present study experimentally and numerically investigated the cavitation flow characteristics in a representative interaction-type ARHCR which has been proposed in the past. The cavitation generation mechanism and development process, which was categorized into “coinciding”, “leaving”, and “approaching” stages, were analyzed explicitly with experimental flow visualization and computational fluid dynamics (CFD) simulations. The changes in the cavitation pattern, area ratio, and sheet cavitation length showed high periodicity with a period of 0.5 ms/cycle at a rotational speed of 3,600 rpm in the flow visualization. The experimental and CFD results indicated that sheet cavitation can be generated on the downstream sides of both the moving and the static CGUs. The sheet cavitation was induced and continuously enlarged in the “leaving” and “approaching” stages and was crushed after the moving CGUs coincided with the static CGUs. In addition, vortex cavitation was formed in the vortex center of each CGU due to high-speed rotating fluid motion. The shape and size of the vortex cavitation were determined by the compression effect produced by the interaction. The findings of this work are important for the fundamental understanding, design, and application of the ARHCRs in water treatment.  相似文献   

9.
In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88–176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities.  相似文献   

10.
In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics.  相似文献   

11.
The effect of the presence and absence of the chloroalkanes, dichloromethane (CH(2)Cl(2)), chloroform (CHCl(3)) and carbon tetrachloride (CCl(4)) on the extent of oxidation of aqueous I(-) to I(3)(-) has been investigated in (a) a liquid whistle reactor (LWR) generating hydrodynamic cavitation and (b) an ultrasonic probe, which produces acoustic cavitation. The aim has been to examine the intensification achieved in the extent of oxidation due to the generation of additional free radicals/oxidants in the reactor as a result of the presence of chloroalkanes. It has been observed that the extent of increase in the oxidation reaction is strongly dependent on the applied pressure in the case of the LWR. Also, higher volumes of the chloroalkanes favour the intensification and the order of effectiveness is CCl(4)>CHCl(3)>CH(2)Cl(2). However, the results with the ultrasonic probe suggest that an optimum concentration of CH(2)Cl(2) or CHCl(3) exists beyond which there is little increase in the extent of observed intensification. For CCl(4), however, no such optimum concentration was observed and the extent of increase in the rates of oxidation reaction rose with the amount of CCl(4) added. Stage wise addition of the chloroalkanes was found to give marginally better results in the case of the ultrasonic probe as compared to bulk addition at the start of the run. Although CCl(4) is the most effective, its toxicity and carcinogenicity may mean that CH(2)Cl(2) and CHCl(3) offer a safer viable alternative and the present work should be useful in establishing the amount of chloroalkanes required for obtaining a suitable degree of intensification.  相似文献   

12.
Ji J  Wang J  Li Y  Yu Y  Xu Z 《Ultrasonics》2006,44(Z1):e411-e414
An alkali-catalyzed biodiesel production method with power ultrasonic (19.7 kHz) has been developed that allows a short reaction time and high yield because of emulsification and cavitation of the liquid-liquid immiscible system. Orthogonality experiments were employed to evaluate the effects of synthesis parameters. Furthermore, hydrodynamic cavitation was used for biodiesel production in comparison to ultrasonic method. Both methods were proved to be efficient, and time and energy saving for the preparation of biodiesel by transesterification of soybean oil.  相似文献   

13.
Hydrodynamic cavitation (HC) has been widely considered a promising technique for industrial-scale process intensifications. The effectiveness of HC is determined by the performance of hydrodynamic cavitation reactors (HCRs). The advanced rotational HCRs (ARHCRs) proposed recently have shown superior performance in various applications, while the research on the structural optimization is still absent. The present study, for the first time, identifies optimal structures of the cavitation generation units of a representative ARHCR by combining genetic algorithm (GA) and computational fluid dynamics, with the objectives of maximizing the total vapor volume, Vvapor , and minimizing the total torque of the rotor wall, Mz . Four important geometrical factors, namely, diameter (D), interaction distance (s), height (h), and inclination angle (θ), were specified as the design variables. Two high-performance fitness functions for Vvapor and Mz were established from a central composite design with 25 cases. After performing 10,001 simulations of GA, a Pareto front with 1630 non-dominated points was obtained. The results reveal that the values of s and θ of the Pareto front concentrated on their lower (i.e., 1.5 mm) and upper limits (i.e., 18.75°), respectively, while the values of D and h were scattered in their variation regions. In comparison to the original model, a representative global optimal point increased the Vvapor by 156% and decreased the Mz by 14%. The corresponding improved mechanism was revealed by analyzing the flow field. The findings of this work can strongly support the fundamental understanding, design, and application of ARHCRs for process intensifications.  相似文献   

14.
Hydrodynamic cavitation was widely used in sterilization, emulsion preparation and other industrial fields. Cavitation intensity is the key performance index of hydrodynamic cavitation reactor. In this study, a novel rotor-radial groove (RRG) hydrodynamic cavitation reactor was proposed with good cavitation intensity and energy utilization. The cavitation performances of RRG hydrodynamic cavitation reactor was analyzed by utilizing computational fluid dynamics method. The cavitation intensity and the cavitation energy efficiency were used as evaluation indicators for RRG hydrodynamic cavitation reactor with different internal structures. The amount of generated cavitation for various shapes of the CGU, interaction distances and rotor speed were analyzed. The evolution cycle of cavitation morphology is periodicity (0.46 ms) in the CGU of RRG hydrodynamic cavitation reactor. The main cavitation regions of CGU were the outflow and inflow separation zones. The cavitation performance of rectangular-shaped CGU was better than the cylindrical-shaped CGU. In addition, the cavitation performance could be improved more effectively by increasing the rotor speed and decreasing the interaction distance. The research results could provide theoretical support for the research of cavitation mechanism of cavitation equipment.  相似文献   

15.
The interaction between liquid flow and solid boundary can result in cavitation formation when the local pressure drops below vaporization threshold. The cavitation dynamics does not depend only on basic geometry, but also on surface roughness, chemistry and wettability. From application point of view, controlling cavitation in fluid flows by surface functionalization is of great importance to avoid the unwanted effects of hydrodynamic cavitation (erosion, noise and vibrations). However, it could be also used for intensification of various physical and chemical processes. In this work, the surfaces of 10-mm stainless steel cylinders are laser textured in order to demonstrate how hydrodynamic cavitation behavior can be controlled by surface modification. The surface properties are modified by using a nanosecond (10–28 ns) fiber laser (wavelength of 1060 nm). In such a way, surfaces with different topographies and wettability were produced and tested in a cavitation tunnel at different cavitation numbers (1.0–2.6). Cavitation characteristics behind functionalized cylindrical surfaces were monitored simultaneously by high-speed visualization (20,000 fps) and high frequency pressure transducers. The results clearly show that cavitation characteristics differ significantly between different micro-structured surfaces. On some surfaces incipient cavitation is delayed and cavitation extent decreased in comparison with the reference – a highly polished cylinder. It is also shown that the increased surface wettability (i.e., hydrophilicity) delays the incipient cavitation.  相似文献   

16.
17.
The COVID −19 pandemic reminded us that we need better contingency plans to prevent the spread of infectious agents and the occurrence of epidemics or pandemics. Although the transmissibility of SARS-CoV-2 in water has not been confirmed, there are studies that have reported on the presence of infectious coronaviruses in water and wastewater samples. Since standard water treatments are not designed to eliminate viruses, it is of utmost importance to explore advanced treatment processes that can improve water treatment and help inactivate viruses when needed. This is the first study to investigate the effects of hydrodynamic cavitation on the inactivation of bacteriophage phi6, an enveloped virus used as a SARS-CoV-2 surrogate in many studies. In two series of experiments with increasing and constant sample temperature, virus reduction of up to 6.3 logs was achieved. Inactivation of phi6 at temperatures of 10 and 20 °C occurs predominantly by the mechanical effect of cavitation and results in a reduction of up to 4.5 logs. At 30 °C, the reduction increases to up to 6 logs, where the temperature-induced increased susceptibility of the viral lipid envelope makes the virus more prone to inactivation. Furthermore, the control experiments without cavitation showed that the increased temperature alone is not sufficient to cause inactivation, but that additional mechanical stress is still required. The RNA degradation results confirmed that virus inactivation was due to the disrupted lipid bilayer and not to RNA damage. Hydrodynamic cavitation, therefore, has the potential to inactivate current and potentially emerging enveloped pathogenic viruses in water at lower, environmentally relevant temperatures.  相似文献   

18.
Over the last two decades, the scientific community and industry have made huge efforts to develop environmental protection technologies. In particular, the scarcity of drinking water has prompted the investigation of several physico-chemical treatments, and synergistic effects have been observed in hyphenated techniques. Herein, we report the first example of water treatment under simultaneous hydrodynamic cavitation and plasma discharge with the intense generation of radicals, UV light, shock waves and charged particles. This highly reactive environment is well suited to the bulk treatment of polluted water (i.e. E. coli disinfection and organic pollutant degradation). We have developed a new prototype and have efficiently applied this hybrid technology to water disinfection and the complete degradation of methanol in water with the aim of demonstrating its scalability. We have analyzed the mechanisms of water disinfection under the abovementioned conditions and verified them by measuring cavitation noise spectra and plasma emission spectra. We have also used the degradation of textile dyes and methanol solutions as an indicator for the formation of radicals.  相似文献   

19.
The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase–hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase–hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min).  相似文献   

20.
The generation of OH* radicals inside hydrodynamic cavitation bubbles was monitored using a salicylic acid dosimeter. The reaction of this scavenger with OH* produces 2,5-dihydroxybenzoic acid (2,5-DHB) and, to a lesser degree, 2,3-DHB. The former, is a specific reaction product that can be determined with a very high sensitivity using HPLC-IF. This method has been applied to study the influence of the flow-rate and the solution pH for a given cavitation chamber geometry. The salicylic dosimetry has proven especially suitable for the characteristic time scales of hydrodynamic cavitation (higher than those of ultrasonic cavitation), which usually gives rise to recombination of radicals before they can reach the liquid-phase. Working at low pH the hydrophobic salicylic acid migrates to the gas-liquid interface and reacts with the OH* radicals, increasing the trapping efficiency of the dosimeter. Hydrodynamic cavitation works as a very low frequency sonochemical reactor, and therefore its potential as an Advanced Oxidation Process might be limited to reactions at the gas-liquid interface and inner bubble (i.e. with volatiles and/or hydrophobic substances).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号