首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a cavity cluster of predetermined size has been considered to study the bubble dynamics in the hydrodynamic cavitation reactor. The effect of different operating and system parameters on the cavitational intensity has been numerically investigated. The yield of any cavitationally induced physical/chemical transformations depends not only on the collapse pressure of the cavities but also on the active volume of cavitation within the reactor. Empirical correlations have been developed to predict the collapse pressure and the active volume of cavitation as a function of different operating parameters based on the bubble dynamics studies. Recommendations are made for designing a cavitational reactor on the basis of the proposed empirical correlations. This work is a first step towards the designing and optimization of hydrodynamic cavitational reactor with cluster approach.  相似文献   

2.
Some aspects of the design of sonochemical reactors   总被引:5,自引:0,他引:5  
The magnitudes of collapse pressures and temperatures as well as the number of free radicals generated at the end of cavitation events are strongly dependent on the operating parameters of the equipment namely, intensity and frequency of irradiation along with the geometrical arrangement of the transducers and the liquid phase physicochemical properties, which affect the initial size of the nuclei and the nucleation process. In the present work, the effect of these parameters on the collapse pressure generated and the maximum size of the cavity during the cavitation phenomena have been studied using the bubble dynamics equation, which considers the compressibility of the medium and a single bubble in isolation. The different liquid phase properties considered include, liquid vapor pressure, viscosity, bulk liquid temperature, surface tension and nature of dissolved gases (polytropic constant of the gas). The theoretical predictions have been also compared with the experimental results observed in the literature qualitatively and some recommendations have been made for the selection of the operating parameters so as to achieve maximum benefits. The work presented here is novel in sense that no earlier studies have considered the compressibility of the liquid medium and tried to evaluate the effect of all the operating parameters on the cavitational activity.  相似文献   

3.
The present work deals with the discussion on the engineering aspects of the design of large-scale sonochemical reactors using the solutions of the bubble dynamics equations as well as experimentation with different reactor types and reactions. Design correlations for the collapse pressure and its relation to the cavitational yield have also been given which should assist the designers in the choice of the operating parameters for a desired cavitational effect. Some techniques for the intensification of cavitational activity (with the use of additives) with an aim of reducing the cost of operation have also been discussed. The guidelines for the future work to be carried out to remove the lacunae in the design information with an aim of developing industrial scale efficient sonochemical reactors have also been mentioned.  相似文献   

4.
Hydrodynamic cavitation for sonochemical effects   总被引:12,自引:0,他引:12  
A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.  相似文献   

5.
Sonochemical reactors have a great promise for many physical and chemical processing applications but its applicability at pilot or industrial scale levels is hindered by lack of novel designs which can reproduce the spectacular effects generated at the laboratory scale. The present work evaluates the efficacy of two new designs, operating at a liquid capacity of 7l. Mapping of the cavitational activity has been carried out using measurements of local pressure using hydrophone and cativational intensity using Cavitation Activity Indicator (Model IC-3, N. Deznukov, Belarus State University, Minsk, Belarus). Aim has been to identify the distribution of the cavitational activity in radial and axial directions and possibly characterizing the zones with very high and very low cavitational activity in these reactor configurations. It has been observed that the cavitational activity is substantially uniform in both the reactors unlike the conventional single transducer based reactors. The study clearly indicates the feasibility of these designs for future large scale applications.  相似文献   

6.
The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10–15 min increases the tensile index of the synthesized paper sheets to about 50–55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors.  相似文献   

7.
A novel method of treating a dye solution has been studied by hydrodynamic cavitation using multiple hole orifice plates. The present work deals with the effect of geometry of the multiple hole orifice plates on the degradation of a cationic dye rhodamine B (rhB) solution. The efficiency of this technique has been compared with the cavitation generated by ultrasound and it has been found that there is substantial enhancement in the extent of degradation of this dye solution using hydrodynamic cavitation. Large-scale operation coupled with better energy efficiency makes this technique a viable alternative for conventional cavitational reactors.  相似文献   

8.
The erratic behaviour of cavitational activity exhibited in a sonochemical reactor pose a serious problem in the efficient design and scale-up; thus it becomes important to identify the active and passive zones existing in the reactor so as to enable proper placement of the reaction mixtures for achieving maximum benefits. In the present work mapping of ultrasonic horn has been carried with the help of local pressure measurement using a hydrophone and estimation of amount of liberated iodine using the Weissler reaction and a quantitative relationship has been established. The measured local pressure pulses have been used in the theoretical simulations of the bubble dynamics equations to check the type of cavitation taking place locally and also estimate the possible collapse pressure pulse in terms of maximum bubble size reached during the cavitation phenomena. Relationship has been also established between the observed iodine liberation rates and the maximum bubble size reached. The engineers can easily use these unique relationships in efficient design, as the direct quantification of the secondary effect is possible.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(4):1392-1399
Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters.  相似文献   

10.
Cavitation events create extreme conditions in a localized ‘bubble collapse’ region, leading to the formation of hydroxyl radicals, shockwaves and microscopic high-speed jets, which are useful for many chemical and physical transformation processes. Single bubble dynamics equations have been used previously to investigate the chemical and physical effects of cavitation. In the present study, the state of the art of the single bubble dynamics equations was reviewed and certain noteworthy modifications were implemented. Simulations reaffirmed previously reported collapse temperatures of the order ~5,000 K and collapse pressures well over ~1,000 bar under varying operating conditions. The chemical effects were assessed in terms of the hydroxyl radical generation rate (OHG), calculated by applying the minimization of the Gibb’s Free Energy method using simulated collapse conditions. OHG values as high as 1x1012 OH molecules per collapse event were found under certain operating conditions. A new equation was proposed to assess the physical effects, in terms of the impact pressure of the water jet - termed as the jet hammer pressure (JHP), formed due to the asymmetrical collapse of a bubble near a wall. The predicted JHP were found to be within a range of ~100 to 1000 bar under varying operating conditions. Important issues such as the onset of cavitation and chaotic solutions, for a cavitating single bubble dynamics were discussed. The Blake threshold pressure was found to be a sufficient criterion to capture the onset of cavitation. The impact of key operating parameters on the chemical and physical effects of cavitation were investigated exhaustively through simulations, over the parameter ranges relevant to acoustic and hydrodynamic cavitation processes. Presented methodology and results will be useful for optimisation and further investigations of a broad range of acoustic and hydrodynamic cavitation-based applications.  相似文献   

11.
The mechanism involved in the spectacular effects from cavitation phenomenon is very complex and there have been several proposed theories to explain the observed results. The experimental as well as the visual observations indicate that a single collapsing cavity is also influenced by the dynamics of the surrounding cavities, which are very near to the collapsing cavity. The observed effects and erosion patterns cannot be explained properly on the basis of a single cavity collapse and hence in this study a cavity cluster (group of cavities) has been considered to understand the mechanism of cavitational effects. The effect of intensity, frequency of ultrasound, initial size of the cluster and the fraction of energy transferred from the collapsing cavities to the surrounding cavities on the cavitational intensity quantified in terms of the pressure pulse generated at the collapse of cavities as well as the active zone of cavitation has been investigated using bubble/cavity dynamics equations, numerically. On the basis of the trends obtained, empirical correlations estimating the collapse pressure and active volume of cavitation, have been developed.  相似文献   

12.
不同超声作用方式对葛根有效部位提取率的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
研究不同的超声作用方式对葛根总黄酮的提取率的影响.采用单频,双频(包括槽式双频以及槽式+探头式双频),及三频等不同的处理方法,对超声作用参数,如时间,声强及处理量的多少进行研究,采用两个超声特性参数即能量效率和空化产量来对比不同容积、频率的超声作用效果.目前的研究表明:多频超声耦合时,可以获得较高的能量效率和空化产量.  相似文献   

13.
Bubble population phenomena in acoustic cavitation   总被引:11,自引:0,他引:11  
Theoretical treatments of the dynamics of a single bubble in a pressure field have been undertaken for many decades. Although there is still scope for progress, there now exists a solid theoretical basis for the dynamics of a single bubble. This has enabled useful classifications to be established, including the distinction between stable cavitation (where a bubble pulsates for many cycles) and transient cavitation (where the bubble grows extensively over time-scales of the order of the acoustic cycle, and then undergoes an energetic collapse and subsequent rebound and then, potentially, either fragmentation, decaying oscillation or a repeat performance). Departures from sphericity, such as shape and surface oscillations and jetting, have also been characterized. However, in most practical systems involving high-energy cavitation (such as those involving sonochemical, biological and erosive effects), the bubbles do not behave as the isolated entities modelled by this single-bubble theory: the cavitational effect may be dominated by the characteristics of the entire bubble population, which may influence, and be influenced by, the sound field.

The well established concepts that have resulted from the single-bubble theory must be reinterpreted in teh light of the bubble population, an appreciation of population mechanisms being necessary to apply our understanding of single-bubble theory to many practical applications of ‘power’ ultrasound. Even at a most basic level these single-bubble theories describe the response of the bubble to the local sound field at the position of the bubble, and that pressure field will be influenced by the way sound is scattered by neighbouring bubbles. The influence of the bubble population will often go further, a non-uniform sound field creating an inhomogeneous bubble distribution. Such a distribution can scatter, channel and focus ultrasonic beams, can acoustically shield regions of the sample, and elsewhere localize the cavitational activity to discrete ‘hot spots’. As a result, portions of the sample may undergo intense sonochemical activity, degassing, erosion, etc., whilst other areas remain relatively unaffected. Techniques exist to control such situations where they are desirable, and to eliminate this localization where a more uniform treatment of the sample is desired.  相似文献   


14.
Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.  相似文献   

15.
Bubble clusters in hydrodynamic cavitation, acoustic cavitation and hydrodynamic-acoustic cavitation (HAC) are investigated via high-speed photography. By introducing a cavitation state variable, a method for cavitation characterization is proposed. The periodic characteristics and intensity distributions of hydrodynamic cavitation, acoustic cavitation and HAC are quantitatively analyzed using this method. It is found that the range of HAC is evidently widened and the strength of HAC is significantly enhanced compared with hydrodynamic cavitation or acoustic cavitation. Furthermore, we developed a preliminary physical model describing the dynamics of a cavitation bubble in HAC and proposed a mechanism to explain the enhancement of the intensity in HAC.  相似文献   

16.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

17.
The purpose of the present study was to obtain nano-scale particles of styrene butadiene rubber. As SBR particles are elastic in nature, conventional methods of size reductions such as impacting, grinding are unable to achieve the final size. So, attempts have been made here to make the nano-particles of the SBR using cavitation technique. Both acoustic and hydrodynamic cavitation techniques have been employed and studied. Hydrodynamic cavitation has been proved to be more energy efficient than the acoustic cavitation on the basis of various parameters. The maximum production rate equivalent to 2 kg/h (solid processing) has been achieved in the newly developed hydrodynamic cavitation set-up (made in house). Similar to transient cavitation, stable cavitation has also been shown to contribute for reduction in the size of the material with very low variation in size. This technique has been proved successful for the size-reduction of the elastic material to nano-scale, thus it may also be used for the size-reduction of the other brittle and hard material by adjusting various cavitational parameters.  相似文献   

18.
Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.  相似文献   

19.
To understand the behaviour of systems containing clouds of bubbles (multibubble system) in real sonochemical reactors, a new diagnosis method, i.e., optical cavitation probe (OCP), has been proposed. When a laser beam is introduced into the cavitation bubble cloud, the scattered light intensity changes by the collective oscillation of cavitation bubbles. The frequency domain spectrum of the scattered light contains rich information on the cavitation bubble clouds, comparable with the acoustic emission spectra detected by a hydrophone. The significant merits of OCP, such as capability for spatially resolved, non-invasive measurement of the cavitation bubble clouds, robustness even in a violent cavitation field have been experimentally demonstrated.  相似文献   

20.
The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5–20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号