首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of carnosine, anserine, and glycyl-histidine on the free-radical fragmentation of glycero-1-phosphate and dimiristoyl phosphatidylglycerol induced by γ-radiation or Fe2+(Cu2+)-containing systems have been studied. The histidine-containing dipeptides (HCDs) exert a radioprotector effect on the fragmentation; this effect depends on the concentration of O2 and reaches a maximum in deaerated systems (by a factor of ~1.7). The HCDs can be antior prooxidants under the conditions of the Fe2+(Cu2+)-mediated generation of HO· radicals. Carnosine exhibits protector properties in a dose-dependent manner regardless of the inductor. Carnosine more effectively inhibits Cu2+-induced fragmentation (by a factor of 2–2.5) than the Fe2+-mediated process (by a factor of 1.4).  相似文献   

2.
Abstract— Methionine (Met) photooxidation sensitized by rose bengal has been studied as a function of pH and other variables. At pH ≤ 6, the reaction is a simple one, 2 Met + O2→ 2 Methionine sulfoxide (MetO). At pH 6–10, another mechanism becomes important, leading to dehydromethionine; the structure of this compound was correctly assigned by Lavine (1945) as the heterocyclic N-S compound 2. One mole of H2O2 is also produced in this process. Dehydromethionine hydrolyzes slowly to MetO. Above pH9, a process leading directly to MetO + H2O2 becomes important. The stoichiometry of the latter two processes are Met + O2+ H2O → MetO + H2O2; competition among these three processes accounts for the puzzling variations in O2 uptake. N-Formylated derivatives of methionine undergo only the first and third processes. Substantial catalytic effects of buffers complicate the picture. All the reactions appear to involve singlet oxygen, since there is the predicted effect of D2O vs H2O on the rate of reaction, although the situation is complicated by apparent aggregation of Met above 5 mM.  相似文献   

3.
Here, we report an ultra-sensitive and colorimetric sensor for the detection of Fe3+ or Cu2+ successively using glutathione-functionalized Au nanoclusters (GSH-AuNCs). For GSH-AuNCs can catalytically oxidize peroxidase substrates, such as 3, 3′, 5, 5′-tetramethylbenzidine (TMB), colored products are formed in the presence of H2O2. While upon the addition of Fe3+ or Cu2+ into the GSH-AuNCs-TMB-H2O2 system, diverse color and absorbance of the system was obtained due to the self oxidation of Fe3+ and the inhibition of peroxidase-like activity of GSH-AuNCs. With the introduction of ethylene diamine tetraacetic acid (EDTA) or ammonium fluoride (NH4F) to GSH-AuNCs-TMB-H2O2+Cu2+ system or GSH-AuNCs-TMB-H2O2+Fe3+ system respectively, a restoration of color and absorbance of system was realized. On the basis of above phenomenon, a colorimetric and quantitative approach for detecting Fe3+ and Cu2+ was developed with detection limit of 1.25 × 10−9 M and 1.25 × 10−10 M respectively. Moreover, the concentration of Fe3+ and Cu2+ in human serums was also accurate quantified by this method. So this design strategy realized the simple and simultaneous detection of Fe3+ and Cu2+, suggesting significant potential in clinical diagnosis.  相似文献   

4.
On‐surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe2+/H2O2) and Fenton‐like (Mn+/H2O2; Mn+ = Fe3+, Co2+, Cu2+, Mn2+) systems was investigated by using paper spray ionization mass spectrometry (PS‐MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS‐MS analyzes). The results indicated the following order in the rates of such reactions: Fe2+/H2O2 ≫ H2O2 ≫ Cu2+/H2O2 > Mn+/H2O2 (Mn+ = Fe3+, Co2+, Mn2+) ~ Mn+ (Mn+ = Fe2+, Fe3+, Co2+, Cu2+, Mn2). The superior capability of Fe2+/H2O2 in causing the degradation of sildenafil indicates that Fe2+ efficiently decomposes H2O2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H2O2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, ie, Fe3+, Co2+, Cu2+, and Mn2+. A unique oxidation by‐product was detected in the reaction between Fe2+/H2O2 with sildenafil, and a possible structure for it was proposed based on the MS/MS data. The on‐surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS‐MS shows to be a convenient platform to promptly monitor on‐surface oxidation reactions.  相似文献   

5.
[RuIII(EDTA)(H2O)]? (EDTA4? = ethylenediaminetetraacetate) catalyzes the oxidation of biological thiols, RSH (RSH = cysteine, glutathione, N-acetylcysteine, penicillamine) using H2O2 as precursor oxidant. The kinetics of the oxidation process were studied spectrophotometrically as a function of [RuIII(EDTA)(H2O)]?, [H2O2], [RSH], and pH (4–8). Spectral analyses and kinetic data are suggestive of a catalytic pathway in which the RSH reacts with [RuIII(EDTA)] catalyst complex to form [RuIII((EDTA)(SR)]2? intermediate species. In the subsequent reaction step the oxidant, H2O2, reacts directly with the coordinated S of the [RuIII((EDTA)(SR)]2? intermediate leading to formation of the disulfido (RSSR) oxidation product (identified by HPLC and ESI-MS studies) of thiols (RSH). Based on the experimental results, a working mechanism involving oxo-transfer from H2O2 to the coordinated thiols is proposed for the catalytic oxidation.  相似文献   

6.
The promotion of the Fenton reaction by Cu2+ ions has been investigated using a wide range of [Cu2+]. Both the disappearance of Fe2+ and the evolution of O2 were followed as a function of time by quenching the reaction mixture with o‐phenanthroline or with excess Fe2 + ions, respectively. Two series of experiments were performed. In one series [H2O2] was 5 × 10−4 mol dm−3, and in the other [H2O2] was reduced to 5 × 10−5 mol dm −3. By stopping the reaction with excess Fe2+ ions, significant differences in the measured absorbance in the two series were observed. In the higher [H2O2] range, the absorbance decreased monotonically in time, due to O2 formation during the reaction. In the lower range, an initial transient rise of the absorbance was observed, indicating the formation of spectroscopically distinct intermediates in the system. A mechanism involving the intermediates FeOCu4+ and FeOCu5+ has been set up. Rate constants of the mechanism have been determined. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 725–736, 2006  相似文献   

7.
Effects of several electron acceptors (Fe3+, Cu2+, Cr(VI), and H2O2) on phenol degradation in anodic contact glow discharge electrolysis have been investigated. Results show that the electron acceptors have positive effects on phenol removal, with the sequence of Fe3+?>?Cr(VI)?>?H2O2?>?Cu2+. Under conditions of voltage 500?V and current 100?mA, 100?mg/L phenol can be removed with 10?min of discharge treatment in the presence of 1.0?mmol/L Fe3+, while without any additive only 35?% of phenol is removed in 30?min. The mechanism of the degradation enhancement was discussed based on the reactions taking place in the presence of the different additives.  相似文献   

8.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and thin-layer chromatography (TLC) have been used to study dopamine and iron mediated free-radical transformation of lipids in their hydrophilic parts. It has been shown that the action of the dopamine/Fe2+ system on galactocerebroside or cardiolipin, which are the components of mixed micelles, results in formation of ceramide or phosphatidic acid and phosphatidylhydroxyacetone, respectively. These data, when combined with results obtained using the ascorbate/Fe2+/H2O2 oxidizing system with the same substrates, demonstrate that the formation of these products proceeds via an OH-radical induced fragmentation taking place in polar moiety of the starting lipids.   相似文献   

9.
The kinetics of the catalytic oxidation reactions of thiol compounds with molecular oxygen in aqueous solutions in the presence of copper ions was studied in relation to the structures of oxidized thiols and the pH of the solution. A modified procedure used for the determination of [O2] allowed us to obtain the kinetic characteristics of more than 30 thiols over a wide pH range. We found that weakly chelating thiols exhibited a first order of reaction with respect to [Cu+] and [O2] under conditions when the [(Cu+)(RS)2] complex occurred. In the oxidation of strongly chelating thiols in an alkaline medium, the order of reaction with respect to [Cu+] was equal to 2, and the rate of reaction was independent of [O2]. We found that the introduction of small amounts of strongly chelating thiols into Cu+ solutions containing difficult-to-oxidize mercaptans resulted in a dramatic acceleration of mercaptan oxidation. We hypothesized that O2 was effectively bound to the [(Cu+)(RS)2] complexes in an alkaline medium in the case of strongly chelating thiols, and this was not the case with the complexes of weakly chelating thiols.  相似文献   

10.
The partial oxidation of ethane to ethanol and acetaldehyde in the H2/O2 fuel cell under mild conditions is reported. The reaction proceeds at the carbon gasdiffusion cathode in the presence of transition metal ions (Fe2+, Cu2+) at ambient pressure and temperature 343 K.  相似文献   

11.
Summary Reduction of CuII in 0.5 M NaOH containing triethanolamine proceeds irreversibly. A similar behaviour is observed in acetate buffer of pH 6. A reversible wave is obtained in (NH4)2CO3 containing EDTA. The diffusion current measured at the proper voltage is proportional to the CuII concentration within a wide range. The waves in 0.5 M NaOH are not well developed being better in acetate buffer and in the presence of EDTA. Ammoniacal solutions containing EDTA can be utilised for the simultaneous estimation of FeIII and CuII. A mixture of FeIII, CuII and UVI can be fairly well analysed in a medium of (NH4)2CO3 containing EDTA.  相似文献   

12.
Protein-bound methionine (Met) oxidation has been associated with normal aging and a variety of age-related diseases, including Alzheimer’s disease and Parkinson’s disease. Monitoring the changes of protein-bound methionine content in the brain in response to normal aging and oxidative stress is of great interest and could be used as an indicator of oxidative stress of rats in pathological conditions. We have developed a rapid analytical method for the determination of oxidized products of protein-bound methionine in rat brain. The assay involved rapid acid proteolysis with microwave irradiation and solid-phase extraction of the free amino acids followed by LC-ESI-ITMS analysis. Detection was achieved in positive ionization with an ion trap mass spectrometer operating in multiple-reaction monitoring mode. The calibration curves of the analytes were linear (r 2 > 0.99) in the range between 0.098 and 1.560 μg/mL. Intra- and inter-day relative standard deviation percentages were <9% and <8%, respectively. The assay performance was sufficient to support a rapid analytical tool for monitoring brain protein-bound methionine oxidation levels. The content of protein-bound Met and methionine sulfoxide (MetO) in the hippocampus of adult and old rats with or without H2O2 treatment was determined by employing the new method. The content of protein-bound MetO was significantly increased in old rats after exposure to H2O2. This result indicates increased sensitivity to Met oxidation in the hippocampus of old rats.  相似文献   

13.
Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP-D3(BJ) density functional method on previously obtained (W.-G. Han Du, et al., Inorg Chem. 2020 , 59, 8906–8915) geometry optimized Fea33+−H2O−CuB2+ dinuclear center (DNC) clusters of the resting oxidized ( O state) “as-isolated” cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2O molecule has H-bonding interaction with another H2O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin-coupled.  相似文献   

14.
Degradation of methyl tert-butyl ether (MTBE) with Fe2+/H2O2 was studied by purge-and-trap gas chromatography-mass spectrometry. MTBE was degraded 99% within 120 min under optimum conditions. MTBE was firstly degraded rapidly based on a Fe2+/H2O2 reaction and then relatively slower based on a Fe3+/H2O2 reaction. The dissolved oxygen decreased rapidly in the Fe2+/H2O2 reaction stage, but showed a slow increase in the Fe3+/H2O2 reaction stage. tert-Butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified as primary degradation products by mass spectrometry. A preliminary reaction mechanism involving two different pathways for the degradation of MTBE with Fe2+/H2O2 was proposed. This study suggests that degradation of MTBE can be achieved using the Fe2+/H2O2 process.  相似文献   

15.
Zusammenfassung In einer Lösung von basischem Magnesiumcarbonat rufen Fe3+-Ionen eine Hemmung des H2O2-Zerfalls hervor, was besonders deutlich in Gegenwart der in diesem System sonst aktiven Cu2+-Ionen zu erkennen war.  相似文献   

16.
In this study, a simple approach was described for the fabrication of CaSO4/Fe0 composite used as a novel adsorbent for the reductive removal of Cu2+ from aqueous solutions. The magnetic CaSO4/Fe0 composite was prepared by a solid state reaction at 550 °C in the H2 atmosphere using CaSO4·2H2O/α-FeOOH as a precursor. The structure and morphology of the as-synthesized magnetic composite were characterized by X-ray diffraction, field emission scanning electron microscopy and a superconducting quantum interference device, respectively. Results showed that the CaSO4/Fe0 composite with a rod-like shape could be easily acquired from the CaSO4·2H2O/α-FeOOH precursor with the ratio of 1:0.5 at 550 °C in the H2 atmosphere for 1 h. The CaSO4/Fe0 composite exhibited enhanced performance relevant to the reductive removal of Cu2+. The removal amount of Cu2+ increased linearly with increasing of concentration of Cu2+ in wastewater. Possible removal mechanisms were proposed as follows: (1) the formation of Cu2O by fast reduction of Cu2+ with Fe0 nanoparticles on interface of CaSO4/Fe0 composite, (2) proper adsorption of Cu2+ on the surface of CaSO4/Fe0 composite, (3) the hydrous iron oxide (HIO) such as Fe (OH)3 and FeOOH in situ generated on the rest of CaSO4/Fe0 composite could further adsorb Cu2+ from wastewater.  相似文献   

17.
Polyaniline hybrid material doped with transition metal mono-substituted silicotungstate β2-K6[SiW11M(H2O)O39]?·?xH2O (M?=?Mn2+, Co2+, Cu2+, Fe2+) were prepared for the first time. Their scanning electron microscopy (SEM), infrared (IR), UV–Vis, and X-ray diffraction (XRD) patterns confirm the existence of Keggin anions and form the space reticular structure. The material exhibits excellent proton conduction, its proton conductivity is 9?×?10?2?s?cm?1 at room temperature (20°C).  相似文献   

18.
Degradation of methyl orange (MO) was carried out by the photo-Fenton process (Fe2+/H2O2/UV) and photo-Fenton-like processes (Fe3+/H2O2/UV, Fe2+/S2O82−/UV, and Fe3+/S2O82−/UV) at the acidic pH of 3 using hydrogen peroxide and ammonium persulfate (APS) as oxidants. Oxidation state of iron had a significant influence on the efficiency of photo-Fenton/photo-Fenton-like processes. It was found that a process with a source of Fe3+ ions as the catalyst showed higher efficiency compared to a process with the Fe2+ ion as the catalyst. H2O2 served as a better oxidant for both oxidation states of iron compared to APS. The lower efficiency of APS is attributed to the generation of excess protons which scavenges the hydroxyl radicals necessary for degradation. Further, the sulfate ions produced from S2O82− form a complex with Fe2+/Fe3+ ions thereby reducing the concentration of free iron ions in the solution. This process can also reduce the concentration of hydroxyl radicals in the solution. Efficiency of the various MO degradation processes follows the order: Fe3+/H2O2/UV, Fe3+/APS/UV, Fe2+/H2O2/UV, Fe2+/APS/UV.  相似文献   

19.
In a previous communication we reported the site-directed generation of a heterodinuclear FeIIICuII complex ( 1 ) by using an asymmetric dinucleating ligand FloH. The iron(III) ion was introduced first on the preferential metal-binding site of the ligand that led to the formation of the thermodynamically favored five-membered chelate ring upon metal-binding. Copper(II) was introduced in the next step. The stepwise metalation strategy reported previously has now been extended to synthesize a series of heterodinuclear FeIIIMII [M = Mn ( 2 ), Fe ( 3 ), Co ( 4 ), and Ni ( 5 )] and FeIICuI ( 1a ) as well as the homodinuclear CuICuI ( 6 ) complexes. The complexes were characterized by X-ray crystallography (except for 1a and 6 ), and by a limited number of spectroscopic methods. Complex 1 with a labile solvent binding site at FeIII reacted with H2O2 to form a transient intermediate that showed reactivity typical of metal peroxide complexes. The metal centers in the complexes 2 – 5 are coordinatively saturated, and hence they showed no reactivity with H2O2. Complex 1a reacted with O2 via an intermolecular pathway to form a μ-oxo bridged tetrameric complex 1b , which was structurally characterized. This is in contrast to the homodinuclear CuICuI and heme FeIICuI cores, which prefer an intramolecular pathway for O2 activation.  相似文献   

20.
Hydrogen peroxide in pickling baths for copper and copper alloys can be determined by linear sweep voltammetry with a glassy carbon electrode. The oxidation mechanism changes around 0.15 M H2O2. Catalytic decomposition was found to be much smaller at glassy carbon electrodes than at platinum electrodes. An almost linear calibration curve was obtained up to 60 mM H2O2. Interferences from Cu2+, Zn2+, Ni2+, Al3+, Fe3+ and Pb2+ as well as from the stabilizers were small. All measurements were made in sulphuric acid solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号