首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we study the existence of infinitely many periodic solutions for second-order Hamiltonian systems
$$\left\{ {\begin{array}{*{20}c} {\ddot u(t) + A(t)u(t) + \nabla F(t,u(t)) = 0,} \\ {u(0) - u(T) = \dot u(0) - \dot u(T) = 0,} \\ \end{array} } \right.$$
, where F(t, u) is even in u, and ?F(t, u) is of sublinear growth at infinity and satisfies the Ahmad-Lazer-Paul condition.
  相似文献   

2.
We deal with anomalous diffusions induced by continuous time random walks - CTRW in ?n. A particle moves in ?n in such a way that the probability density function u(·, t) of finding it in region Ω of ?n is given by ∫Ωu(x, t)dx. The dynamics of the diffusion is provided by a space time probability density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the equation
$$u\left( {x,t} \right) = \left[ {\left( {J - \delta } \right)*u} \right]\left( {x,t} \right)$$
, where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem for a given initial density distribution f. We use Banach fixed point method to solve it and prove that under parabolic rescaling of J, the equation tends weakly to the heat equation and that for particular kernels J, the solutions tend to the corresponding temperatures when the scaling parameter approaches 0.
  相似文献   

3.
We obtain conditions for the existence and uniqueness of an optimal control for the linear nonstationary operator-differential equation
$\frac{d}{{dt}}[A(t)y(t)] + B(t)y(t) = K(t)u(t) + f(t)$
with a quadratic performance criterion. The operators A(t) and B(t) are closed and may have nontrivial kernels. The results are applied to differential-algebraic equations and to partial differential equations that do not belong to the Cauchy-Kowalewskaya type.
  相似文献   

4.
We prove the well-posed solvability in the strong sense of the boundary value Problems
$$\begin{gathered} ( - 1)\frac{{_m d^{2m + 1} u}}{{dt^{2m + 1} }} + \sum\limits_{k = 0}^{m - 1} {\frac{{d^{k + 1} }}{{dt^{k + 1} }}} A_{2k + 1} (t)\frac{{d^k u}}{{dt^k }} + \sum\limits_{k = 1}^m {\frac{{d^k }}{{dt^k }}} A_{2k} (t)\frac{{d^k u}}{{dt^k }} + \lambda _m A_0 (t)u = f, \hfill \\ t \in ]0,t[,\lambda _m \geqslant 1, \hfill \\ {{d^i u} \mathord{\left/ {\vphantom {{d^i u} {dt^i }}} \right. \kern-\nulldelimiterspace} {dt^i }}|_{t = 0} = {{d^j u} \mathord{\left/ {\vphantom {{d^j u} {dt^j }}} \right. \kern-\nulldelimiterspace} {dt^j }}|_{t = T} = 0,i = 0,...,m,j = 0,...,m - 1,m = 0,1,..., \hfill \\ \end{gathered} $$
where the unbounded operators A s (t), s > 0, in a Hilbert space H have domains D(A s (t)) depending on t, are subordinate to the powers A 1?(s?1)/2m (t) of some self-adjoint operators A(t) ≥ 0 in H, are [(s+1)/2] times differentiable with respect to t, and satisfy some inequalities. In the space H, the maximally accretive operators A 0(t) and the symmetric operators A s (t), s > 0, are approximated by smooth maximally dissipative operators B(t) in such a way that
$$\begin{gathered} \mathop {lim}\limits_{\varepsilon \to 0} Re(A_0 (t)B_\varepsilon ^{ - 1} (t)(B_\varepsilon ^{ - 1} (t))^ * u,u)_H = Re(A_0 (t)u,u)_H \geqslant c(A(t)u,u)_H \hfill \\ \forall u \in D(A_0 (t)),c > 0, \hfill \\ \end{gathered} $$
, where the smoothing operators are defined by
$$B_\varepsilon ^{ - 1} (t) = (I - \varepsilon B(t))^{ - 1} ,(B_\varepsilon ^{ - 1} (t)) * = (I - \varepsilon B^ * (t))^{ - 1} ,\varepsilon > 0.$$
.
  相似文献   

5.
In this paper, we study the existence and uniqueness of Stepanov-almost periodic mild solution to the non-autonomous neutral functional differential equation
$$\begin{aligned} \frac{{\hbox {d}}}{\hbox {d}t}[u(t)-F(t,u(t-\alpha (t)))]= & {} A(t)[u(t)-F(t,u(t-\alpha (t)))]\\&+\,G(t,u(t),u(t-\alpha (t))),\quad t\in \mathbb {R}, \end{aligned}$$
in a Banach space \(\mathbb {X},\) where the family of linear operators A(t) satisfies the ‘Acquistapace–Terreni’ conditions, the evolution family generated by \(A(t),t\in \mathbb {R},\) is exponentially stable, \((\gamma -A(\cdot ))^{-1}\) and \(\alpha (\cdot )\) are almost periodic, and F and G are Stepanov-almost periodic continuous functions.
  相似文献   

6.
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian–Hamiltonian systems
$$\frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))-a(t)|u(t)|^{p(t)-2}u(t)+\nabla W(t,u(t))=0,$$
where \({t \in \mathbb{R}}\), \({u \in \mathbb{R}^n}\), \({p \in C(\mathbb{R},\mathbb{R})}\) with p(t) > 1, \({a \in C(\mathbb{R},\mathbb{R})}\), \({W\in C^1(\mathbb{R}\times\mathbb{R}^n,\mathbb{R})}\) and \({\nabla W(t,u)}\) is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants \({0<\tau_1<\tau_2<\infty}\) such that \({\tau_1\leq a(t)\leq \tau_2 }\) for all \({t \in \mathbb{R}}\) and W(t, u) is of super-p(t) growth or sub-p(t) growth as \({|u|\rightarrow \infty}\), we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
  相似文献   

7.
This paper is concerned with the existence of positive homoclinic solutions for the second-order differential equation
$$\begin{aligned} u^{\prime \prime }+cu^{\prime }-a(t)u+f(t,u)=0, \end{aligned}$$
where \(c\ge 0\) is a constant and the functions a and f are continuous and not necessarily periodic in t. Under other suitable assumptions on a and f, we obtain the existence of positive homoclinic solutions in both cases sub-quadratic and super-quadratic by using critical point theorems.
  相似文献   

8.
This paper is devoted to the study of evolution problems of the form \(-\frac {du}{dr}(t) \in A(t)u(t) + f(t, u(t))\) in a new setting, where, for each t, A(t) : D(A(t)) → 2 H is a maximal monotone operator in a Hilbert space H and the mapping t?A(t) has continuous bounded or Lipschitz variation on [0, T], in the sense of Vladimirov’s pseudo-distance. The measure dr gives an upper bound of that variation. The perturbation f is separately integrable on [0, T] and separately Lipschitz on H. Several versions and new applications are presented.  相似文献   

9.
In this work we obtain sufficient conditions for stabilizability by time-delayed feedback controls for the system
$\frac{{\partial w\left( {x,t} \right)}}{{\partial t}} = A(D_x )w(x,t) - A(D_x )u(x,t), x \in \mathbb{R}^n , t > h, $
where D x =(-i?/?x 1,...-i?/?x n ), A(σ) and B(σ) are polynomial matrices (m×m), det B(σ)≡0 on ? n , w is an unknown function, u(·,t)=P(D x )w(·,t?h) is a control, h>0. Here P is an infinite differentiable matrix (m×m), and the norm of each of its derivatives does not exceed Γ(1+|σ|2)γ for some Γ, γ∈? depending on the order of this derivative. Necessary conditions for stabilizability of this system are also obtained. In particular, we study the stabilizability problem for the systems corresponding to the telegraph equation, the wave equation, the heat equation, the Schrödinger equation and another model equation. To obtain these results we use the Fourier transform method, the Lojasiewicz inequality and the Tarski—Seidenberg theorem and its corollaries. To choose an appropriate P and stabilize this system, we also prove some estimates of the real parts of the zeros of the quasipolynomial det {Iλ-A(σ)+B(σ)P(σ)e -hλ.
  相似文献   

10.
The singularly perturbed parabolic equation ?u t + ε2Δu ? f(u, x, ε) = 0, xD ? ?2, t > 0 with Robin conditions on the boundary of D is considered. The asymptotic stability as t → ∞ and the global domain of attraction are analyzed for the stationary solution whose limit as ε → 0 is a nonsmooth solution to the reduced equation f(u, x, 0) = 0 that consists of two intersecting roots of this equation.  相似文献   

11.
For the stationary storage process {Q(t), t ≥ 0}, with \( Q(t)=\sup _{s\ge t}\left (X(s)-X(t)-c(s-t)^{\beta }\right ),\) where {X(t), t ≥ 0} is a centered Gaussian process with stationary increments, c > 0 and β > 0 is chosen such that Q(t) is finite a.s., we derive exact asymptotics of \(\mathbb {P}\left (\sup _{t\in [0,T_{u}]} Q(t)>u \right )\) and \(\mathbb {P}\left (\inf _{t\in [0,T_{u}]} Q(t)>u \right )\), as \(u\rightarrow \infty \). As a by-product we find conditions under which strong Piterbarg property holds.  相似文献   

12.
We consider some class of non-linear systems of the form
$\dot x = A( \cdot )x + \sum\limits_{i = 1}^l {A_i ( \cdot )x(t - \tau _i (t)) + b( \cdot )u} ,$
where A(·) ∈ ? n × n , A i (·) ∈ ? n × n , b(·) ∈ ? n , whose coefficients are arbitrary uniformly bounded functionals.
A special type of the Lyapunov-Krasovskii functional is used to synthesize dynamic control described by the equation
$\dot u = \rho ( \cdot )u + (m( \cdot ),x),$
where ρ(·) ∈ ?1, m(·) ∈ ? n , which makes the system globally asymptotically stable. Also, the situation is considered where the control u enters into the system not directly but through a pulse element performing an amplitude-frequency modulation.
  相似文献   

13.
We consider the stochastic heat equation with multiplicative noise \(u_{t}=\frac{1}{2}\Delta u+u\dot{W}\) in ?+×? d , whose solution is interpreted in the mild sense. The noise \(\dot{W}\) is fractional in time (with Hurst index H≥1/2), and colored in space (with spatial covariance kernel f). When H>1/2, the equation generalizes the Itô-sense equation for H=1/2. We prove that if f is the Riesz kernel of order α, or the Bessel kernel of order α<d, then the sufficient condition for the existence of the solution is d≤2+α (if H>1/2), respectively d<2+α (if H=1/2), whereas if f is the heat kernel or the Poisson kernel, then the equation has a solution for any d. We give a representation of the kth order moment of the solution in terms of an exponential moment of the “convoluted weighted” intersection local time of k independent d-dimensional Brownian motions.  相似文献   

14.
This paper is concerned with the blow-up solutions of nonlinear Schrödinger equation (NLS) with oscillating nonlinearities. The limiting profiles of the blow-up solutions u(t, x) with initial data \({\|u_0\|_{L^2}=\|Q\|_{L^2}}\) are obtained. It reads that \({|u(t,x)|^2\rightarrow \|Q\|_{L^2}^2\delta_{x=y_1}}\) (Dirac function), as \({t \rightarrow T}\) , and that u(t, x) converges strongly to Q(x) in the energy space \({\Sigma=\{u\in H^1; \int |x|^2|u|^2dx<\infty\}}\) up to scaling and phase parameters and also translation in the nonradial case.  相似文献   

15.
We classify all solutions (pq) to the equation \(p(u)q(u)=p(u+\beta )q(u+\alpha )\) where p and q are complex polynomials in one indeterminate u, and \(\alpha \) and \(\beta \) are fixed but arbitrary complex numbers. This equation is a special case of a system of equations which ensures that certain algebras defined by generators and relations are non-trivial. We first give a necessary condition for the existence of non-trivial solutions to the equation. Then, under this condition, we use combinatorics of generalized Dyck paths to describe all solutions and a canonical way to factor each solution into a product of irreducible solutions.  相似文献   

16.
The paper is devoted to studying the space of nonempty closed convex (but not necessarily compact) sets in ? n , a dynamical system of translations, and existence theorems for differential inclusions. We make this space complete by equipping it with the Hausdorff-Bebutov metric. The investigation of these issues is important for certain problems of optimal control of asymptotic characteristics of a control system. For example, the problem \(\dot x = A(t,u)x\), (u, x) ∈ ? m+n , λ n (u(·))→ min, where λ n (u(·)) is the largest Lyapunov exponent of the system {ie121-2} = A(t, u)x, leads to a differential inclusion with a noncompact right-hand side.  相似文献   

17.
For the first-order ordinary delay differential equation
$$u'(t) + p(t)u(r(t)) = 0,$$
where pL loc(?+; ?+), τC(?+; ?+), τ(t) ≤ t for t ∈ ?+, limt→+∞ τ(t) = +∞, and ?+:= [0, ∞), we obtain new criteria for the existence of sign-definite and oscillating solutions, thus generalizing some earlier-known results.
  相似文献   

18.
We further develop the method, devised earlier by the authors, which permits finding closed-form expressions for the optimal controls by elastic boundary forces applied at two ends, x = 0 and x = l, of a string. In a sufficiently large time T, the controls should take the string vibration process, described by a generalized solution u(x, t) of the wave equation
$$u_{tt} (x,t) - u_{tt} (x,t) = 0,$$
from an arbitrary initial state
$$\{ u(x,0) = \varphi (x), u_t (x,0) = \psi (x)$$
to an arbitrary terminal state
$$\{ u(x,T) = \hat \varphi (x), u_t (x,T) = \hat \psi (x).$$
  相似文献   

19.
Consider the Slepian process S defined by S(t) = B(t +?1) ? B(t),t ∈ [0, 1] with B(t), t ∈ ? a standard Brownian motion. In this contribution we analyze the properties between the maximum \(m_{s}=\max \limits _{0\leq u\leq s}S(u)\) and the maximum \(m_{t}=\max \limits _{0\leq u\leq t}S(u)\) for 0 ≤ s < t ≤?1 fixed. Explicit integral expressions are obtained for the joint distribution function between m s and m t and the distribution function of the partial maximum m s . Further, we apply our results for the determination of the moments of m s .  相似文献   

20.
In this paper, a quasi-periodically forced nonlinear beam equation \({u_{tt}+u_{xxxx}+\mu u+\varepsilon\phi(t)h(u)=0}\) with hinged boundary conditions is considered, where μ > 0, \({\varepsilon}\) is a small positive parameter, \({\phi}\) is a real analytic quasi-periodic function in t with a frequency vector ω = (ω 1,ω 2 . . . , ω m ), and the nonlinearity h is a real analytic odd function of the form \({h(u)=\eta_1u+\eta_{2\bar{r}+1}u^{2\bar{r}+1}+\sum_{k\geq \bar{r}+1}\eta_{2k+1}u^{2k+1},\eta_1,\eta_{2\bar{r}+1} \neq0, \bar{r} \in {\mathbb {N}}.}\) The above equation admits a quasi-periodic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号