首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The results of targeted modification of the structure and properties of copper nanotubes by accelerated O3+ ions at a fluence of 1 × 109 to 5 × 1011 cm?2 with an energy of 1.75 MeV/nucleon are reported. XHray diffraction methods have been used to study the dynamics of changes in the crystallite shape, dislocation density, and the orientation of copper nanotubes before and after irradiation. It has been shown that irradiation with accelerated ions has a significant effect on the change in texture coefficients and dislocation density. At a fluence of 1 × 1010 cm?2 or higher, the accumulation of oxygen in the nanotube structure is observed, which leads to the appearance of oxide compounds.  相似文献   

2.
Poly(lactide-co-glycolide) (PLGA) films were irradiated by 180 MeV/amu Ag8+ ions and 50 MeV/amu Li3+ ions at different fluences of 5 × 1010, 5 × 1011 and 1 × 1012 ions/cm2. Modifications of polymer films induced by the swift heavy ions (SHI) irradiation were studied by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. The dominant effect of the SHI beam irradiation is proposed to be chain scission which leads to breakage of polymer chains, followed by hydrogen abstraction. The results from FTIR spectroscopy showed that the intensity of all peaks of the irradiated samples decreased at high fluence of SHI, suggesting PLGA samples significantly degraded at high SHI fluence. The variation in optical band gap energy and Urbach energy with increasing fluence was calculated from UV–Vis spectroscopy and explained in terms of changes occurring in the polymer matrix. X-ray diffraction patterns also show appreciable changes in PLGA at high fluence. FESEM results revealed that the hydrophilicity of the PLGA surface increased with an increase in ion fluence. In this paper the optical, chemical and structural changes with different fluence rates are discussed.  相似文献   

3.
The effect of irradiation of copper films with low-energy He2+ ions on their structural properties has been studied. The surface morphology and structural properties of the samples before and after irradiation have been examined by scanning electron microscopy, energy dispersive analysis, and X-ray diffraction. Bombardment of the initial samples with He2+ ions at a fluence of 1 × 1016ion/cm2 alters the surface morphology of copper films and leads to the formation of nanoscale inclusions of hexagonal shape. An increase in the fluence to 1 × 1017 ion/cm2 and higher results in the formation of cracks and amorphous oxide inclusions on the sample surface.  相似文献   

4.
We report a study on the carbon ion beam induced modifications on optical, structural and chemical properties of polyallyl diglycol carbonate (PADC) commercially named as CR-39 and Polyethyleneterepthalate (PET) polymer films. These films were then irradiated by 55 MeV C5+ ion beam at various fluences ranging from 1×1011 to 1×1013 ions/cm2. The pristine as well as irradiated samples were subjected to UV–Visible spectral study (UV–Vis), Photoluminescence (PL), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. It has been found that ion irradiation may induce a sort of defects in the polymers due to chain scission and cross linking as observed from PL spectral study. It is revealed from UV–Vis spectra absorption edge shifted towards longer wavelength region after irradiation with increasing ion fluence. This shift clearly reflects decrease in optical band gap. The XRD study indicates the gradual decrease in intensity in case of PADC with increasing ion fluence. However, the intensity pattern increased in case of PET at fluence of 1011 ion/cm2 then decreased with further increase in fluence. Crystalline size of PADC was found to be decreasing gradually with increase of ion fluence. Whereas, the crystalline size of PET films found to increase with lower fluence and decreases with higher ion fluence. FTIR spectrum also shows the change in intensity of the typical bands after irradiation in the both the polymers. The results so obtained can be used successfully in heavy ions dosimetry using well reported techniques.  相似文献   

5.
We report the morphological changes on Ge surfaces upon 50 keV Ar+ and 100 keV Kr+ beam irradiation at 60° angle of incidence. The Ge surfaces having three different amorphous–crystalline (a/c) interfaces achieved by the pre‐irradiation of 50 keV Ar+ beam at 0°, 30° and 60° with a constant fluence of 5 × 1016 ions/cm2 were further processed by the same beam at higher fluences viz. 3 × 1017, 5 × 1017, 7 × 1017 and 9 × 1017 ions/cm2 to understand the mechanism of nano‐scale surface patterning. The Kr+ beam irradiation was carried out only on three fresh Ge surfaces with ion fluences of 3 × 1017, 5 × 1017 and 9 × 1017 ions/cm2 to compare the influence of projectile mass on surface patterning. Irrespective of the depth of a/c interface, the nanoscale surface patterning was completely missing on Ge surface with Ar+ beam irradiation. However, the surface patterning was evidenced upon Kr+ beam irradiation with similar ion fluences. The wavelength and the amplitude of the ripples were found to increase with increasing ion fluence. In the paper, the mass redistribution at a/c interface, the incompressible solid flow through amorphous layer, the angular distribution of sputtering/backscattering yields and the generation of non‐uniform stress across the amorphous layer are discussed, particularly in analogy with low energy experiments, to get better understanding of the mechanism of nanoscale surface patterning by the ion beams. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A novel 1,8-naphthalimide dye with simple structure has been produced by a facile synthetic method for colorimetric and fluorescent sensing of H+ and Cu2+. In CH3CN/H2O (1/1, v/v), the dye could monitor H+ using dual channels (ratiometric absorbance and fluorescence intensity change) from pH 6.2 to 12.0. Meanwhile, in the pH range of 1.9–5.2, the dye could also be used to detect Cu2+ using triple channels [ultraviolet–visible (UV–Vis) absorption, fluorescence intensity reduction, as well as fluorescence blueshift]. The detection limits for Cu2+ evaluated by colorimetric and fluorescent titration were 6.10 × 10?7 and 2.62 × 10?7 M, respectively. The dye exhibited specific selectivity and sensitivity for H+ and Cu2+ over various coexisting metal ions. Moreover, the sensing mechanism of the dye for H+ and Cu2+ was carefully examined.  相似文献   

7.
The effect of Xe+ bombardment on the surface morphology of four different polymers, polystyrene (PS), poly(phenylene oxide), polyisobutylene, and polydimethylsiloxane, was investigated in ion energy and fluence ranges of interest for secondary ion mass spectrometry depth‐profiling analysis. Atomic force microscopy (AFM) was applied to analyze the surface topography of pristine and irradiated polymers. AFM analyses of nonirradiated polymer films showed a feature‐free surface with different smoothness. We studied the influence of different Xe+ beam parameters, including the incidence angle, ion energy (660–4000 eV), current density (0.5 × 102 to 8.7 × 102 nA/cm2), and ion fluence (4 × 1014 to 2 × 1017 ion/cm2). Xe+ bombardment of PS with 3–4 keV at a high current density did not induce any change in the surface morphology. Similarly, for ion irradiation with lower energy, no surface morphology change was found with a current density higher than 2.6 × 102 nA/cm2 and an ion fluence up to 4 × 1016 ion/cm2. However, Xe+ irradiation with a lower current density and a higher ion fluence led to topography development for all of the polymers. The roughness of the polymer surface increased, and well‐defined patterns appeared. The surface roughness increased with ion irradiation fluence and with the decrease of the current density. A pattern orientation along the beam direction was visible for inclined incidence between 15° and 45° with respect to the surface normal. Orientation was not seen at normal incidence. The surface topography development could be explained on the basis of the balance between surface damage and sputtering induced by the primary ion beam and redeposition–adsorption from the gas phase. Time‐of‐flight secondary ion mass spectrometry analyses of irradiated PS showed strong surface modifications of the molecular structure and the presence of new material. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 314–325, 2001  相似文献   

8.
Molybdenum (0.5 at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100 MeV O7+ ions with different fluences of 5×1011, 1×1012 and 1×1013 ions/cm2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×1013 ions/cm2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from ~122 to 48 cm2/V s with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×1011 ions/cm2 showed relatively low resistivity of 6.7×10?4 Ω cm with the mobility of 75 cm2/V s. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×1011 ions/cm2.  相似文献   

9.
SnO2 thin films synthesized by sol-gel are irradiated with reactor neutrons up to fast neutron fluence of 9.6 × 1017 neutrons cm–2 at 40°C. The influence of defects generated by neutrons irradiation, through the properties modification, on the photo-catalytic activity of SnO2 films is investigated. It is found that the photoactivity of the irradiated films is enhanced after reactor neutrons irradiation. An improvement of 41% is observed for the sample irradiated at a neutron fluence of 9.6 × 1017 neutrons cm–2. This is attributed to several parameters modified by the reactor neutron irradiation principally the crystallite size and space charge region which are closely related to the photocatalytic performance.  相似文献   

10.
In the present work effect of 90 MeV O7+ ions with five different fluences on poly(ethylene oxide) (PEO)/Na+-montmorillonite (MMT) nanocomposites has been investigated. PEO/MMT nanocomposites were synthesized by solution intercalation technique. With the increase in irradiation fluence, gallery spacing of MMT increases in the composite and an exfoliated nanostructure is obtained at the fluence of 5?×?1012 ions/cm2 as revealed by X-ray diffraction results. Highest room temperature ionic conductivity of 4.2?×?10?6?S?cm?1 was found for the fluence 5?×?1012 ions/cm2, while the conductivity for unirradiated polymer electrolyte was found to be 7.5?×?10-8?S?cm?1. The increase in intercalation of PEO chains inside the galleries of MMT results in the increase in interaction between Na+ cation and oxygen heteroatom leading to the increase in ionic conductivity of the composites. Surface morphology and interactions among the various constituents in the nanocomposites at different fluence have been examined by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The appearance of peak for each fluence in the loss tangent suggests the presence of relaxing dipoles in the polymer nanocomposite electrolyte films. With the increase in ion fluence the peak shifts towards higher frequency side, suggesting decrease in the relaxation time.  相似文献   

11.
A rhodamine-conjugated coumarin (L) was used in designing a selective fluorescence chemosensor for the determination of trace amounts of Cr3+ ions in acetonitrile–water (MeCN/H2O (90:10, %v/v) solutions. The intensity of the fluoresce emission of the chemosensor is intensified upon addition of Cr3+ ions in MeCN/H2O (90:10, %v/v) solutions, due to the formation of a selective 1:1 complex between L and Cr3+ ions. The fluorescence enhancement versus Cr3+ concentration has been found to be linear from 1.0?×?10?7 to 1.8?×?10?5 M and a detection limit of 7.5?×?10?8 M. The proposed fluorescent probe proved to be highly selective towards Cr3+ ions as compared to other common metal ions and could be successfully applied to the determination of Cr3+ concentrations in some water and wastewater samples.  相似文献   

12.
Formation of the metal is observed under irradiation of methanol-containing aqueous solutions of cadmium salts with accelerated electrons. The process of precipitation of the metal and its properties was examined. The radiation-chemical yield is (1.7 ± 0.2) × 10–2 g kGy. The efficiency of the radiation-induced reduction of a number of other metals in aqueous media: copper, lead, and thallium, was substantiated. The method may be promising for obtaining deposits of pure and amorphous metals from aqueous solutions of their salts and for purification of aqueous effluents containing these toxic metals.  相似文献   

13.
The surface structure of polytetrafluoroethylene (PTFE) upon α‐particle irradiation has been investigated at doses in the range of 1 × 107 to 1 × 1011 Rad and compared with the surface structure of the unirradiated polymer. Both neat and 25% fiberglass content PTFE were studied. The samples, maintained at nominal room temperature, were irradiated in vacuum by 5.5 MeV 4He2+ ions generated in a tandem accelerator beam line. Static time‐of‐flight SIMS (ToF‐SIMS) was employed to probe chemical changes at the surface as a function of the irradiation level. In general, the data are indicative of increased cross‐linking at α‐doses less than 1 × 109 Rad, followed by increased fragmentation and unsaturation at α‐doses greater than 1 × 109 Rad. Throughout the irradiation regime, scission is a constant factor promoting cross‐linking, branching, and unsaturation. However, at α‐doses greater than 1 × 1010 Rad, extreme structural degradation of the polymer becomes evident and is accompanied by conversion to oxygen‐functionalized and aliphatic compounds. Thus, for PTFE in an α‐particle field, an upper exposure limit of ~1010 Rad is essential for nominal retention of molecular structure. Finally, a quantitative relationship between α‐dose and characteristic fragment ion intensity is developed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   

15.
Ion beam irradiation has been widely used to modify the structure and properties of membrane surface layers. In this study, the gas permeability and selectivity of an asymmetric polyimide membrane modified by He ion irradiation were investigated using a high vacuum apparatus equipped with a Baratron absolute pressure gauge at 76 cmHg and 35 °C. Specifically, we estimated the effects of the gas diffusion and solubility on the gas permeation properties of the asymmetric membranes with the carbonized skin layer prepared by ion irradiation. The asymmetric polyimide membranes were prepared by a dry–wet phase inversion process, and the surface skin layer on the membrane was irradiated by He ions at fluences of 1 × 1015 to 5 × 1015 ions/cm2 at 50 keV. The increase in the gas permeability of the He+‐irradiated asymmetric polyimide membrane is entirely due to an increase in the gas diffusion, and the gas selectivity increases of the membranes were responsible for the high gas diffusion selectivities. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 262–269, 2007.  相似文献   

16.
Micropatterns of proteins were created by using patterned ion beam irradiation onto a polyethylene film and graft polymerization of acrylic acid. Acrylic acid was selectively graft polymerized on the irradiated regions. The results of the grafting study revealed that the optimum fluence to achieve the maximum grafting degree was 1 × 1015 ions/cm2. Biotin was covalently immobilized on the grafted regions of the polyethylene film. Protein patterning was achieved through specific binding of biotin and streptavidin. The resolved protein patterns with the maximum fluorescence intensity were achieved on the poly(acrylic acid) (PAA)‐grafted polyethylene films prepared at the fluence of 1 × 1015 ions/cm2. This method can be used for patterning of various biomolecules and for further biological applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Polyethylene terephthalte (PET) was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced modifications with respect to optical, structural and thermal properties. In the present investigation, the fluence for carbon irradiation was varied from 1×1011 to 1×1014 ions cm−2, while that for copper beam was kept in the range of 1×1011 to 1×1013 ions cm−2. UV–vis, FTIR, XRD and DSC techniques were utilized to study the induced changes. The analysis of UV–vis absorption studies reveals that there is decrease of optical energy gap up to 10% on carbon ion irradiation (at 1×1014 ions cm−2), whereas the copper beam (at 1×1013 ions cm−2) leads to a decrease of 49%. FTIR analysis indicated the formation of alkyne end groups along with the overall degradation of polymer with copper ion irradiation. X-ray diffraction analysis revealed that the semi-crystalline PET losses its crystallinity on swift ion irradiation. It was found that the carbon beam (1×1014 ions cm−2) decreased the crystallite size by 16% whereas this decrease is of 12% in case of the copper ion irradiated PET at 1×1013 ions cm−2. The loss in crystallinity on irradiation has been supported by DSC thermograms.  相似文献   

18.
A Nickel Dimethylglyoxime (Ni‐DMG) compound was dispersed in polymethyl methacrylate (PMMA) films at different concentrations. PMMA was synthesized by a solution polymerization technique. These films were irradiated with 120 MeV Ni10+ ions at the fluences of 1×1011 and 1×1012 ions/cm2. The radiation induced changes in dielectric properties and average surface roughness were investigated by using an LCR meter in the frequency range 50 Hz to 10 MHz and atomic force microscopy (AFM), respectively. The electrical properties of irradiated films are found to increase with the fluence and also with the concentration of Ni‐DMG. From the analysis of frequency, f, dependence of dielectric constant, ?, it has been found that the dielectric response in both pristine and irradiated samples obey the Universal law given by ? α f n?1. The dielectric constant/loss is observed to change significantly due to the irradiation. This suggests that ion beam irradiation promotes (i) the metal to polymer bonding (ii) convert the polymeric structure in to hydrogen depleted carbon network due to the emission of hydrogen gas and/or other volatile gases. Atomic force microscopy (AFM) shows that the average surface roughness and surface morphology of irradiated films are observed to change.  相似文献   

19.
The swift heavy irradiation induced changes taking place in ethylene–chlorotrifluoroethylene (E–CTFE) copolymer films were investigated in correlation with the applied doses. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×1011–3×1012 ions cm?2. Structural and thermal properties of the irradiated as well as pristine E–CTFE films were studied using FTIR, UV–visible, TGA, DSC and XRD techniques. Swift heavy ion irradiation was found to induce changes in E–CTFE depending upon the applied doses.  相似文献   

20.
A new method for biomolecular patterning based on ion irradiation‐induced graft polymerization was demonstrated in this study. Ion irradiation on a polymer surface resulted in the formation of active species, which was further used for surface‐initiated graft polymerization of acrylic acid. The results of the grafting study revealed that the surface graft polymerization using 20 vol % of acrylic acid on the poly(tetrafluoroethylene) (PTFE) film irradiated at the fluence of 1 × 1015 ions/cm2 for 12 h was the optimum graft polymerization condition to achieve the maximum grafting degree. The results of the fluorescence microscopy also revealed that the optimum fluence to achieve the maximum fluorescence intensity was 1 × 1015 ions/cm2. The grafting of acrylic acid on the PTFE surfaces was confirmed by a fluorescence labeling method. The grafted PTFE films were used for the immobilization of amine‐functionalized p‐DNA, followed by hybridization with fluorescently tagged c‐DNA. Biotin‐amine was also immobilized on the acrylic acid grafted PTFE surfaces. Successful biotin‐specific binding of streptavidin further confirmed the potential of this strategy for patterning of various biomolecules. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6124–6134, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号