首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the existence and uniqueness of the solution of the inverse problem of finding an unknown coefficient b(x) multiplying the lower derivative in the nondivergence parabolic equation on the plane. The integral of the solution with respect to time with some given weight function is given as additional information. The coefficients of the equation depend on the time variable as well as the space variable.  相似文献   

2.
We study the electrical impedance tomography problem with piecewise constant electric conductivity coefficient, whose values are assumed to be known. The problem is to find the unknown boundaries of domains with distinct conductivities. The input information for the solution of this problem includes several pairs of Dirichlet and Neumann data on the known external boundary of the domain, i.e., several cases of specification of the potential and its normal derivative. We suggest a numerical solution method for this problem on the basis of the derivation of a nonlinear operator equation for the functions that define the unknown boundaries and an iterative solution method for this equation with the use of the Tikhonov regularization method. The results of numerical experiments are presented.  相似文献   

3.
We obtain existence and uniqueness theorems for the solution of the inverse problem of simultaneously determining the right-hand side and the coefficient of a lower-order derivative in a parabolic equation under an integral observation condition. We give explicit estimates for the maximum absolute value of the unknown right-hand side and the unknown coefficient of the equation with constants expressed via the input data of the problem. We present a nontrivial example of an inverse problem to which our theorems apply.  相似文献   

4.
For a hyperbolic equation, we consider an inverse coefficient problem in which the unknown coefficient occurs in both the equation and the initial condition. The solution values on a given curve serve as additional information for determining the unknown coefficient. We suggest an iterative method for solving the inverse problem based on reduction to a nonlinear operator equation for the unknown coefficient and prove the uniform convergence of the iterations to a function that is a solution of the inverse problem.  相似文献   

5.
We study the Dirichlet problem for a nonlocal wave equation in a rectangular domain. We prove the existence and uniqueness of a solution of the problem and show that determining whether the solution is unique can be reduced to determining whether a function of Mittag-Leffler type has real zeros. The obtained uniqueness condition turns into the uniqueness condition for the solution of the Dirichlet problem for the wave equation as the order of the fractional derivative in the equation tends to 2.  相似文献   

6.
We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is p-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.  相似文献   

7.
We consider a three-dimensional boundary value problem for the Laplace equation on a thin plane screen with boundary conditions for the “directional derivative”: boundary conditions for the derivative of the unknown function in the directions of vector fields defined on the screen surface are posed on each side of the screen. We study the case in which the direction of these vector fields is close to the direction of the normal to the screen surface. This problem can be reduced to a system of two boundary integral equations with singular and hypersingular integrals treated in the sense of the Hadamard finite value. The resulting integral equations are characterized by the presence of integral-free terms that contain the surface gradient of one of the unknown functions. We prove the unique solvability of this system of integral equations and the existence of a solution of the considered boundary value problem and its uniqueness under certain assumptions.  相似文献   

8.
We establish conditions for the existence and uniqueness of a solution of the inverse problem for a onedimensional quasilinear parabolic equation with an unknown coefficient of the time derivative in the case of boundary conditions of the second kind.  相似文献   

9.
The present paper deals with the inverse problem of determination of the coefficient of the first derivative of the unknown function with respect to a spatial variable for a one-dimensional parabolic equation in the domain whose boundary is determined by two unknown functions. The conditions of local existence and uniqueness of a solution to the inverse problem are established.  相似文献   

10.
It is a known fact that if a function, together with all of its derivatives, vanishes at a point, then the function will be zero in a neighborhood of the point if its successive derivatives satisfy certain estimates. We show that even if the function does not have a priori all of its derivatives but is such that its first derivative has a special sequence of majorizing functions, then in this case also the function will be equal to zero. We use our results to obtain theorems concerning the uniqueness of the solution of an abstract Cauchy problem.  相似文献   

11.
We consider an inverse coefficient problem for a linear system of partial differential equations. The values of one solution component on a given curve are used as additional information for determining the unknown coefficient. The proof of the uniqueness of the solution of the inverse problem is based on the analysis of the unique solvability of a homogeneous integral equation of the first kind. The existence of a solution of the inverse problem is proved by reduction to a system of nonlinear integral equations.  相似文献   

12.
We establish conditions for the unique existence of a solution of the inverse problem of simultaneous determination of two unknown coefficients in a parabolic equation. One of these coefficients is the leading coefficient that depends on time, and the other coefficient depends on a space variable.  相似文献   

13.
We consider a boundary value problem for a second-order linear elliptic differential equation with constant coefficients in a domain that is the exterior of an ellipse. The boundary conditions of the problem contain the values of the function itself and its normal derivative. We give a constructive solution of the problem and find the number of solvability conditions for the inhomogeneous problem as well as the number of linearly independent solutions of the homogeneous problem. We prove the boundary uniqueness theorem for the solutions of this equation.  相似文献   

14.
In this paper, we consider the Cauchy problem for the Laplace equation, in a strip where the Cauchy data is given at x = 0 and the flux is sought in the interval 0<x?1. This problem is typical ill-posed: the solution (if it exists) does not depend continuously on the data. We study a modification of the equation, where a fourth-order mixed derivative term is added. Some error stability estimates for the flux are given, which show that the solution of the modified equation is approximate to the solution of the Cauchy problem for the Laplace equation. Furthermore, numerical examples show that the modified method works effectively.  相似文献   

15.
We consider the problem on nonzero solutions of the Schrödinger equation on the half-line with potential that implicitly depends on the wave function via a nonlinear ordinary differential equation of the second order under zero boundary conditions for the wave function and the condition that the potential is zero at the beginning of the interval and its derivative is zero at infinity. The problem is reduced to the analysis and investigation of solutions of the Cauchy problem for a system of two nonlinear second-order ordinary differential equations with initial conditions depending on two parameters. We show that if the solution of the Cauchy problem for some parameter values can be extended to the entire half-line, then there exists a nonzero solution of the original problem with finitely many zeros.  相似文献   

16.
The paper deals with the pathwise uniqueness of solutions to one-dimensional time homogeneous stochastic differential equations with a diffusion coefficient σ satisfying the local time condition and measurable drift term b. We show that if the functions σ and b satisfy a non-degeneracy condition and fundamental solution to considered equation is unique in law, then pathwise uniqueness of solutions holds. Our result is in some sense negative, more precisely we give an example of an equation with Holder continuous diffusion coefficient and nondegenerate drift for which a fundamental solution is not unique in law and pathwise uniqueness of solutions does not hold.  相似文献   

17.
We consider a boundary value problem for harmonic functions outside cuts on the plane. The jump of the normal derivative and a linear combination of the normal derivative on one side with the jump of the unknown function are given on each cut. The problem is considered with three conditions at infinity, which lead to distinct results on the existence and number of solutions. We obtain an integral representation of the solution in the form of potentials whose density satisfies a uniquely solvable Fredholm integral equation of the second kind.  相似文献   

18.
We consider the global existence of classical solutions and blowup phenomena for a spatially one‐dimensional radiation hydrodynamics model problem, which consists of a scalar Burgers‐type equation coupled with a nonlocal advection‐reaction equation for radiation intensity. The model can be seen as an extension of the well‐known Hamer model that includes additionally the effects of scattering. It is well‐known that the initial value problem for Burgers' equation cannot be solved classically as soon as the derivative of the initial datum is negative somewhere. For our model problem, there is a critical negative number such that if the spatial derivative of the initial function is larger than this number, the associated initial‐value problem admits a global classical solution. However, when the spatial derivative of the initial data is below another negative threshold number, the initial value problem can also not be solved classically. Moreover, when there does not exist a global classical solution, it is shown that the first spatial derivative of solution must blow up in finite time. The results of the paper generalize the findings of Kawashima and Nishibata for the Hamer model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We consider a spatially continuous evolutionary game whose payoff is defined as the density of real wages that is determined by the continuous Dixit–Stiglitz–Krugman model in an urban setting. This evolutionary game is expressed by the initial value problem for the replicator equation whose growth rate contains an operator which acts on an unknown function that denotes the density of workers. We prove that this initial value problem has a unique global solution, and that if workers are distributed radially in space and concentrated in the neighborhood of a city at the initial time, then all workers will move toward the center of the city in such a way that the density of workers converges to the Dirac delta function in the sense of distribution. In the real world this result describes a population explosion caused by concentration of workers motivated by the disparity in real wages.  相似文献   

20.
We consider the inverse problem for a functional-differential equation in which the delay function and a function occurring in the source are unknown. The values of the solution and its derivative at x = 0 are given as additional information. We derive a system of nonlinear integral equations for the unknown functions. This system is used to prove a uniqueness theorem for the inverse problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号