首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The performances of graphene oxide (GO) and graphene–platinum hybrid nanoparticles (Gr-Pt hybrid NPs) were compared for biofuel cell (BFC) systems. This is the first study that constitutes these nanomaterials in BFC systems. For this purpose, fabricated bioanodes were combined with laccase modified biocathode in a single cell membraneless BFC. Power and current densities of these systems were calculated as 2.40 μW cm 2 and 211.90 μA cm 2 for GO based BFC and 4.88 μW cm 2 and 246.82 μA cm 2, for Gr-Pt hybrid NPs based BFC. As a result, a pioneer study which demonstrates the effective performances of combination of graphene with Pt was conducted.  相似文献   

2.
For the first time, nanoporous graphene and graphene oxide sheets have been synthesized and used as supports for preparation of Co/graphene-based catalysts to evaluate their efficiency in Fischer–Tropsch synthesis and for comparison with the performance of Co/Al2O3 to study the effects of the carbon supports on the reaction. Outstanding results were obtained compared with the alumina counterpart. Application of nanoporous graphene yielded heavier hydrocarbons compared with the Co/Al2O3 catalyst, possibly due to the high surface area and intrinsic properties of the carbon nanostructures as effective hydrogen carriers. Use of graphene oxide and nanoporous graphene supports also resulted in high CO2 selectivity. However, the graphene-supported catalysts displayed lower C1–C4 hydrocarbon selectivity compared with the Al2O3 catalyst.  相似文献   

3.
Polyimide–graphene composites (PIG) were prepared with variable amounts of graphene, and their thermal properties were analyzed in films on substrates or sheet states. The thermal conductivities of PIG composite sheets gradually moved upwards with increase of graphene loading. Coefficient of thermal expansion of composite sheet was higher in out-of-plane mode than in-plane mode. The residual stress of a composite film was monotonously changed in accordance with the variation of temperature and lowered with increase of graphene. In addition, the residual stress of a composite film reached to the initial stress value during cooling process after heating. The stress profiles on further heating and cooling runs closely followed the stress profile during the first cooing run.  相似文献   

4.
Stacking of individual graphene sheets (GS) is effectively inhibited by introducing one-dimensional carbon nanotubes to form a 3-D hierarchical structure which enhances the utilization of GS-based composites. From SEM images, CNTs are useful nanospacers for diminishing the face-to-face aggregation of GS. The specific electrochemically active surface area (SECSA) and specific double-layer capacitance (CS,DL) of Pt/GS–CNTs (127.9 m2/g, 171.3 F/g) is much higher than that of Pt/GS (105.4 m2/g, 104.7 F/g) and Pt/CNTs (51.5 m2/g, 37.1 F/g), revealing the synergistic effects between GS and CNTs on enhancing the electrochemical activity of Pt nanoparticles and electrolyte-accessible surface area.  相似文献   

5.
Graphene oxide(GO), as a metal-free and readily available carbocatalyst, has been extensively applied in catalytic organic transformations. This minireview aims to give an overview of the progress on the application of native GO as a catalyst for various organic transformations in the past decade(mainly from 2011 to 2020).  相似文献   

6.
Graphene-based composites represent a new class of materials with potential for many applications. Graphene can be attached to a metal, a semiconductor, or any polymer. In this work, our approach was to attach graphene to a well-known semiconductor, ZnO. We synthesized graphene–ZnO composites by a simple, low-cost, environmentally friendly solvothermal method, carrying out the reaction in different conditions in order to discover the optimum condition, and also to obtain a high-quality product. Our research demonstrated that the optimum temperature to obtain a high-quality product is 180 °C for 20 h. All obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy, electron dispersion spectrometry, X-ray photoelectron spectrometry, Raman spectroscopy, Fourier transform infrared spectrometry, UV–visible spectrophotometry, and thermogravimetric analysis. The XRD confirmed that the crystal structure of the ZnO in the nanocomposite was wurtzite type. The prepared composite was stable to 800 °C with its 80 % weight.  相似文献   

7.
Graphene oxide(GO), as a metal-free and readily available carbocatalyst, has been extensively applied in catalytic organic transformations. This minireview aims to give an overview of the progress on the application of native GO as a catalyst for various organic transformations in the past decade(mainly from 2011 to 2020).  相似文献   

8.
A simple chemical method to obtain bulk quantities of N-doped, reduced graphene oxide (rGO) sheets (see figure) as an n-type semiconductor through the treatment of as-prepared GO sheets with the commonly used reducing reagent hydrazine, followed by rapid thermal annealing (RTA) is described.  相似文献   

9.
This study used a facile method to develop a novel silver/Graphene–polypyrrole (Ag/G–PPy)-modified electrode that can be used as an electrochemical sensor for levosimendan detection. The properties of the synthesized Ag/G–PPy-modified electrode were examined through field-emission scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The Ag/G–PPy-modified electrode exhibited satisfactory current signals toward levosimendan concentrations ranging from 0.21 to 6.88 μM and exhibited a low detection limit (0.12 μM). Accordingly, the proposed electrode can serve as a simple and inexpensive electrochemical sensor for levosimendan detection.  相似文献   

10.
The Kolbe electrochemical oxidation strategy has been utilized to achieve an efficient quasireversible electrochemical grafting of the α-naphthylmethyl functional group to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. The picture shows Raman D-band maps of both systems.  相似文献   

11.
A fluorescence based cholesterol detection method has been developed using competitive host-guest interaction between graphene bound β-cyclodextrin (β-CD) with rhodamine 6G (R6G) and cholesterol. Fluorescence of β-CD incorporated R6G is quenched by graphene but is 'turned on' by cholesterol as it replaces R6G from the β-CD host.  相似文献   

12.
SnS2–graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. SnS2 nanosheets are uniformly coating on the surface of graphene. SnS2–graphene nanocomposites exhibit high cyclability and capacity. The reversible capacity is 766 mAh/g at 0.2C rate and maintains at 570 mAh/g after 30 cycles. Such a high performance can be attributed to high electron and Li-ion conductivity, large surface area, good mechanical flexibility of graphene nanosheets and the synergetic effect between graphene and SnS2 nanostructures. The present results indicate that SnS2–graphene nanocomposites have potential applications in lithium-ion battery anodes.  相似文献   

13.
A new ionic liquid (IL)–graphene composite prepared by combining IL and a three-dimensional graphene material with large specific surface area and pronounced mesoporosity was used for ultratrace trinitrotoluene detection, showing low background current, high sensitivity of 1.65 μA cm?2 per ppb, low detection limit of 0.5 ppb and good reproducibility, which is much superior to that demonstrated by the IL–CNT and IL–graphite composites. The preparation of IL–graphene composite expands the scope of IL-based electrochemical devices.  相似文献   

14.
Li metal,possessing advantages of high theoretical specific capacity and low electrochemical potential,is regarded as the most promising anode material for next-generation batteries.However,despite decades of intensive research,its practical application is still hindered by safety hazard and low Coulombic efficiency,which is primarily caused by dendritic Li deposition.To address this issue,restraining dendrite growth at the nucleation stage is deemed as the most effective method.By utilizing the difference of electronegativity between boron atoms and carbon atoms,carbon atoms around boron atoms in boron-doped graphene(BG)turn into lithiophilic sites,which can enhance the adsorption capacity to Li+at the nucleation stage.Consequently,an ultralow overpotential of 10 mV at a current density of 0.5 mA/cm2 and a high average Coulombic efficiency of 98.54%over more than 140 cycles with an areal capacity of 2 mAh/cm2 at a current density of 1 m A/cm2 were achieved.BG-Li|LiFePO4 full cells delivered a long lifespan of480 cycles at 0.5 C and excellent rate capability.This work provides a novel method for rational design of dendrite-free Li metal batteries by regulating nucleation process.  相似文献   

15.
Water-soluble graphene dispersions were fabricated by the exfoliation of graphite functionalized with furfuryl alcohol by Diels–Alder cycloaddition reaction. The pristine graphite was firstly heat-treated in N-methyl-2-pyrrolidone (NMP) before it was functionalized with furfuryl alcohol, and then, the increased interlayer spacing is propitious for furfuryl alcohol to enter into the lattice and react with graphite. High-resolution transmission electron microscopy and Raman spectroscopy indicate that the functional graphene is a high-quality product without any significant defects, and atomic force microscopy shows that the functional graphene consists of single to few layers graphene. Moreover, the grafting ratio onto graphene is up to 1.52 mmol/g. Therefore, the method provides a feasible route to produce functional graphene.  相似文献   

16.
《中国化学快报》2022,33(8):3802-3808
Remarkable Li-ion battery (LIB) anode materials need to have long cycle life and fast charge/discharge rate, however they are difficult to be realized in the monolayer anode materials. The monolayer β-Bi has the stiffness of only 33.0 N/m, thus the Bi/G heterostructure is proposed to improve the electronic and mechanical properties and to produce better LIB anode performance in this paper. The calculated results show that Bi/G heterostructure has excellent thermodynamic, dynamical and mechanical stability. The band gap is only 0.04 eV, which ensures remarkable electrical conductivity. In addition, the Bi/G heterostructure has higher stiffness (369.2 N/m) than that of monolayer β-Bi and graphene. The diffusion barrier (Ebarrier) of 0.32 eV and volume expansion ratio (VER) of only 4% can ensure the rapid transport of Li+ ions in the charge/discharge cycling process and long life of the LIB. These calculated theoretical results for describing the detail properties of Li storage and diffusion in the Bi/G heterostructure can supply adequate conclusive evidence for the prediction of remarkable properties of Bi/G heterostructure as an anode material for LIBs.  相似文献   

17.
How aryl groups attach to a graphene sheet is an experimentally unanswered question. Using first principles density functional theory methods, we shed light on this problem. For the basal plane, isolated phenyl groups are predicted to be weakly bonded to the graphene sheet, even though a new single C-C bond is formed between the phenyl group and the basal plane by converting a sp2-carbon in the graphene sheet to sp3. However, the interaction can be strengthened significantly with two phenyl groups attached to the para positions of the same six-membered ring to form a pair on the basal plane. The strongest bonding is found at the graphene edges. A 1,2-addition pair is predicted to be most stable for the armchair edge, whereas the zigzag edge possesses a unique localized state near the Fermi level that shows a high affinity for the phenyl group.  相似文献   

18.
Journal of Solid State Electrochemistry - A polyaniline/sulfonated graphene (PANI/SG) nanostructure was synthesized as electrode material for an asymmetric supercapacitor via a novel in situ...  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - The improved Hummers’ synthesis of graphene oxide (GO) from graphite is investigated to monitor how the functional groups form during the...  相似文献   

20.
Recently, most of the researchers focused on investigating the superlubricity of glycerol or glycerin/water solutions, yet all of them have no attempt to follow with performance about their lubricity under high load and fast rotational speed. In this article, the lubricity of glycerol was systematically investigated under 98 N and 1,450 rpm using a four-ball wear machine. Interestingly, results showed that friction-induced graphene layers were first discovered during sliding, meanwhile, friction-induced graphene layers were closely related to the high flush temperature rise and catalysts. The synergy of graphene and glycerol elastohydrodynamic film on wear scar played an important role in obtaining low friction and wear-less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号