首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
An order-optimal method is developed to solve an inverse problem for a parabolic heat conduction equation with a variable coefficient.  相似文献   

4.
An order-optimal method is proposed of approximately solving an inverse problem for a parabolic equation with variable coefficients. We give an order-exact estimate for the error of the method.  相似文献   

5.
6.
7.
8.
An iterative gradient descent method is applied to solve an inverse coefficient heat conduction problem with overdetermined boundary conditions. Theoretical estimates are derived showing how the target functional varies with varying the coefficient. These estimates are used to construct an approximation for a target functional gradient. In numerical experiments, iteration convergence rates are compared for different descent parameters.  相似文献   

9.
A parameter identification problem for the hydraulic properties of porous media is considered. Numerically, this inverse problem is solved by minimizing an output least-squares functional. The unknown hydraulic properties which are nonlinear coefficients of a partial differential equation are approximated by spline functions. The identification is embedded into a multi-level algorithm and coupled with a linear sensitivity analysis to describe the ill-posedness of the inverse problem.  相似文献   

10.
A new method of solving the coefficient inverse problem   总被引:3,自引:0,他引:3  
This paper is concerned with the new method for solving the coefficient inverse problem in the reproducing kernel space. It is different from the previous studies. This method gives accurate results and shows that it is valid by the numerical example.  相似文献   

11.
This paper deals with the problem of determining of an unknown coefficient in an inverse boundary value problem. Using a nonconstant overspecified data, it has been shown that the solution to this inverse problem exists and is unique.  相似文献   

12.
13.
The inverse problem of determining the growth rate coefficient of biological objects from additional information on their time-dependent density is considered. Two nonlinear integral equations are derived for the unknown coefficient, which is determined on part of its domain from one equation and on the remaining part from the other equation. The nonlinear integral equations are solved by iterative methods. The convergence conditions for the iterative methods are formulated, and results of numerical experiments are presented.  相似文献   

14.
Translated from Metody Matematicheskogo Modelirovaniya i Vychislitel'noi Diagnostika, pp. 35–45, Izd. Moskovskogo Universiteta, Moscow, 1990.  相似文献   

15.
An algorithm optimal in order is proposed for solving an inverse Stefan problem. We also give some exact estimates of accuracy of this method.  相似文献   

16.
A nonlocal boundary value problem for a third-order hyperbolic equation with variable coefficients is considered in the one- and multidimensional cases. A priori estimates for the nonlocal problem are obtained in the differential and difference formulations. The estimates imply the stability of the solution with respect to the initial data and the right-hand side on a layer and the convergence of the difference solution to the solution of the differential problem.  相似文献   

17.
In this article, the identification of an unknown time-dependent source term in an inverse problem of parabolic type with nonlocal boundary conditions is considered. The main approach is to change the inverse problem to a system of Volterra integral equations. The resulting integral equations are convolution-type, which by using Sinc-collocation method, are replaced by a system of linear algebraic equations. The convergence analysis is included, and it is shown that the error in the approximate solution is bounded in the infinity norm by the norm of the inverse of the coefficient matrix multiplied by a factor that decays exponentially with the size of the system. To show the efficiency of the present method, an example is presented. The method is easy to implement and yields very accurate results.  相似文献   

18.
A coefficient inverse problem of the one-dimensional hyperbolic equation with overspecified boundary conditions is solved by the finite difference method. The computation is carried out in the x direction instead of the usual t direction. The original boundary condition and the overspecified boundary data are used as the new initial conditions, and the original data at t = 0 are used to compute the coefficient directly. The computation time used by this scheme is almost equal to that for solving the hyperbolic equation in the same region once, even though the inverse problem is essentially nonlinear and hence more difficult to solve. An error estimate is obtained that guarantees the stability of the scheme marching in the x direction. Several numerical experiments are carried out to show the convergence and other properties of the scheme. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the solution domain. The purpose of our paper is to construct a numerical algorithm for solving the inverse problem by an iterative method called a method of simple iteration (MSI) and to study the resolution quality of the inverse problem as a function of the number and location of measurement points. Three two-dimensional inverse problem formulations are considered. The results of our numerical calculations are presented. It is shown that the MSI decreases the objective functional at each iteration step. However, due to the ill-posedness of the inverse problem the difference between the exact and approximate solutions decreases up to some fixed number k min, and then monotonically increases. This shows the regularizing properties of the MSI, and the iteration number can be considered a regularization parameter.  相似文献   

20.
The problem of determining the thermal conductivity coefficient that depends on temperature is studied. The consideration is based on the initial-boundary value problem for the one-dimensional unsteady heat equation. The mean-root-square deviation of the temperature distribution field and the heat flux from the experimental data on the left boundary of the domain is used as the objective functional. An analytical expression for the gradient of the objective functional is obtained. An algorithm for the numerical solution of the problem based on the modern fast automatic differentiation technique is proposed. Examples of solving the problem are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号