首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum chemical calculations by the density functional theory method at the B3LYP/6-311++G** level have shown that 5-nitro-5-methyl-1,2,3,4-tetramethoxycarbonylcyclopentadiene (1) and 5-nitro-2-methyl- 1,3,4,5-tetramethoxycarbonylcyclopentadiene (2) undergo interconversion by consecutive 1,5-sigmatropic shifts via the formation of an unstable isomer, 5-nitro-1-methyl-2,3,4,5- tetramethoxycarbonylcyclopentadiene (3), rather than through the NMR-detected 1,3-shift of the nitro group over the cyclopentadiene ring perimeter. According to calculations in the gas phase, isomer 3 is by ΔE ZPE of 3.6 kcal/mol less stable than isomer 1, while the activation barrier of the stepwise 1 → 2 process is 24.5 kcal/mol, which agrees well with NMR data (ΔG25C, chlorobenzene, 26.5 kcal/mol).  相似文献   

2.
Dynamic NMR has revealed intramolecular migrations of hydrogen atom over the periphery of the five-membered ring in 5-(p-tolyl)-1,2,3,4-tetraphenylcyclopentadiene in a deuteronitrobenzene solution with energy barrier ΔG 180 = 24.8 kcal/mol. Quantum-chemical DFT calculations B3LYP/6-311++G** have shown that such migrations in 1,2,3,4,5-pentaphenylcyclopentadiene in the gas phase occur in a chiral conformation of propeller type by the mechanism of 1,5-sigmatropic hydrogen shifts with retention of configuration through asymmetric transition state with energy barrier ΔE ZPE = 25.9 kcal/mol. Enantiomers P and M can readily interconvert into each other (ΔE ZPE = 3.9 kcal/mol) owing to synchronous flip rotations of the phenyl groups.  相似文献   

3.
Density functional theory [DFT B3LYP/6-311++G(d,p)] simulation has revealed stable tautomers and conformers of polydentate ligand system based on 5,7-di(tert-butyl)-2-(8-hydroxyquinolin-2-yl)-1,3-tropolone with different structures of the coordination nodes, capable of formation of metal chelates. It has been shown that the tautomeric NH- and OH- forms with exo and endo location of the hydroxy group in the quinoline fragments (close in energy, ΔEZPE = 0.2–2.4 kcal/mol) are stabilized by intramolecular hydrogen bonds. Energy barriers of the interconversion of these forms via rotation about the C–OH bond of the phenolic fragment are of ΔEZPE = 2.1–4.2 kcal/mol, whereas the barrier of rotation about the bond between the quinoline and tropolone fragments is higher (ΔEZPE = 18.2 and 19.6 kcal/mol).  相似文献   

4.
Activation barriers for fast 1,3-N,N' migrations of phenylmercury groups in the corresponding derivatives of N,N'-di(p-tolyl)form(benz)amidines have been calculated by density functional theory B3LYP/Gen, 6-311++G(d,p)/SDD to be ΔE ZPE = 4.5 and 3.0 kcal/mol. The results correspond to the data of dynamic NMR, which have shown the upper limit of activation barriers of these rearrangements (ΔG) to be below 8 kcal/mol. The calculations have shown that the most stable is the E-syn form of N-phenylmercury-N,N'-di(p-tolyl)form(benz)amidines stabilized by supplementary intramolecular coordination of mercury atom with imine nitrogen atom of the amidine triad.  相似文献   

5.
By means of DFT B3LYP/6-31G(d, p) calculations of 7-(heptaphenylcycloheptatrienyl) isothiocyanate, the dissociation–recombination mechanism for intramolecular migrations of the isothiocyanato group has been revealed, and the structure of the transition state preceding the formation of a tight ion pair has been found for the first time. According to calculations, the high activation barrier for displacements of the isothiocyanato group ΔEZPE = 21.3 kcal/mol is related to the stable conformation of the molecule with the equatorial–NCS group and the orthogonally located phenyl substituent in the axial position. The rearrangement of the molecule to the form favorable for migrations of the–NCS group involves the inversion of the seven-membered ring accompanied by rotation of the phenyl group.  相似文献   

6.
Quantum-chemical calculations in terms of the density functional theory showed that cyclopolyenyl isocyanides RNC are considerably less stable than the corresponding cyanides and that they are capable of undergoing RNC → RCN isomerization according to both 1,2-shift mechanism (cyclopropenyl and cyclopentadienyl isocyanides; ΔE = 35.0 and 37.5 kcal/mol, respectively) and previously unknown 2,5-sigmatropic shift mechanism (cycloheptatrienyl isocyanide, ΔE = 26.4 kcal/mol). Migration of cyano group in the cyclopentadiene and cycloheptatriene systems follows the 1,5-sigmatropic shift pattern. The activation barrier to 1,5-shift of cyano group around the cycloheptatriene ring was estimated by dynamic NMR in deuterated nitrobenzene (ΔG 190°C = 26.5 kcal/mol).  相似文献   

7.
Possible paths of halogen atom migration in 5-halogeno-1,2,3,4,5-pentamethoxycarbonylcyclopentadienes were studied using the density functional theory. The calculations revealed preferential 1,5(in comparison with 1,3-) sigmatropic shifts of halogen atoms along the perimeter of the five-membered ring with the energy barriers ΔE ZPE = 42.9, 26.9, 19.8, and 15.4 kcal mol–1 for the fluoro-, chloro-, bromo-, and iodosubstituted derivatives, respectively. The calculated charges of halogen atoms in the structures of transition states for 1,5-shifts change from negative for the fluorine atom to positive for the iodine atom (–0.356 (F), 0.019 (Cl), 0.052 (Br), 0.184 e (I)). The migration capacity increases in the order F < Cl < Br < I with an increase in the atomic radius of halogen.  相似文献   

8.
In the framework of the MP2/6-311++G**//RHF/6-31G* ab initio approach we investigated the structure and relative stability of the imine (-CHR-CH=N-) and enamine (-CR=CH-NH-) forms of the simplest imines, oximes, and their ethers. Although the enamine form is unstable, double bond migration R2CH-CH=N-→ R2C=CH-NH-is often regarded as one of the stages of a series of reactions that take place in superbasic media, in particular, synthesis of pyrroles from ketoximes and acetylene. For isomerization of E-ethaneimine CH3-CH=NH to vinylamine CH2=CH-NH2, calculations predict an increase of 4.3 kcal/mol in energy. A close value (4.8 kcal/mol) was obtained for the energy of isomerization of ketimine (CH3)2C=NH to 2-aminopropene. The methyl group in CH3-CH=CH-NH2 stabilizes the neighboring double bond, and the transformation of E-propane-1-imine into E-and Z-aminoprop-1-ene is accompanied by an increase of 2.8 kcal/mol in energy. After the transition from imines to oximes, the enamine form is drastically destabilized. The highly endothermal character of the CH3-CH=NOH → CH2=CH-NHOH rearrangement (16.4 kcal/mol) is retained from acetaldoxime to its methyl ether and decreases by only 1.0 kcal/mol for the isomerization reaction of the vinyl ether of acetaldoxime to N,O-divinylhydroxylamine. These rearrangements are thermodynamically unfavorable probably because of the increased negative charge on the nitrogen atom and, as a consequence, destabilization of the N-O bond.  相似文献   

9.
The kinetics of gas reaction \(HOCl\underset{{k_r }}{\overset{{k_f }}{\longleftrightarrow}}H(^2 S) + OCl(X^2 \Pi _i )\) was analyzed by the MP4 method. In the temperature range of 100–373 K the rate constants k f and k r and equilibrium constant K were changed from 1.10 × 10?220 to 1.17 × 10?52 s?1, from 2.89 × 10?16 to 1.68 × 10?5s?1 and from 3.80 × 10?205 to 6.96 × 10?48 respectively. In the above temperature range, the activation energy of the forward reaction (E f) is 105.05 kcal/mol. In the same temperature interval there are two kinetic domains for the reverse reaction with activation energies (E r1 = 5.53 kcal/mol when T is 100–273 K and E r2 = 14.50 kcal/mol when T is 273–373 K, respectively.  相似文献   

10.
Interaction between pyrrole and its 2-vinyl, 2-azo, and 2-phenylazo derivatives with acetylene in the gas phase and DMSO was studied using the MP2/6-311++G**//MP2/6-31G* ab initio approach and including the solvation effects within the framework of the continuum model. Possible reasons are considered for the hindered character of direct vinylation of azopyrroles with acetylene in superbasic media. The introduction of the azo group in the 2 position of the pyrrole ring leads to the increased stability of the pyrrole anion and increased acidity from pK a = 22.1 for pyrrole and pK a = 20.5 for vinylpyrrole to pK a = 16.6 and 16.4 for 2-azopyrrole and 2-phenylazopyrrole, respectively. The binding energy between the pyrrole anion and the acetylene molecule decreases concurrently. The heat of formation of the pyrrole anion adducts with acetylene changes from ΔH = 4.8 kcal/mol for pyrrole to ΔH = 22.4 kcal/mol for 2-phenylazopyrrole. For all anion adducts under study, preferable isomers are Z isomers formed by the interaction of pyrrole anions with the cis-distorted acetylene molecule, but the formation of the E isomers corresponds to a lower activation barrier, which explains known Z stereoselectivity of the nucleophilic addition to monosubstituted acetylenes. When an azo group is introduced, the reaction becomes more endothermal, and the energy barriers to the formation of both Z and E isomers increase. Among other reasons for lowering of the activity of 2-arylazopyrroles during vinylation we consider possible reaction of acetylene addition at the most remote nitrogen atom of the azo group and participation of the anion center in cation chelation (K+ in the calculation).  相似文献   

11.
Equilibrium geometric parameters, normal mode frequencies and intensities in IR spectra, atomization enthalpy, and relative energies of low-lying electronic states of scandium fluoride molecules (ScF, ScF2, and ScF3) are calculated by the coupled-cluster method (CCSD(T)) in triple-, quadruple, and quintuple-zeta basis sets with the subsequent extrapolation of the calculation results to the complete basis set limit. The ScF molecule is also studied by the CCSDT technique. The error in the approximate calculation of triple excitations in the CCSD(T) method does not exceed 0.002 Å for the equilibrium internuclear distance R e, 4 cm?1 for the vibrational frequency, and 0.2 kcal/mol for the dissociation energy of the molecule. In the ground electronic state \(\tilde X^2 \) A 1(C 2ν ) of ScF2 molecules, R e(Sc-F) = 1.827 Å and αe(F-Sc-F) = 124.2°; the energy barrier to bending (linearization) h = E min(D g8h ) ? E min(C) = 1652 cm?1. The relative energies of Ã2Δ g and \(\tilde B^2 \)Π g electronic states are 3522 cm?1 and 14633 cm?1 respectively. The bond distance in the ScF3 molecule (\(\tilde X^1 \) A1, D 3h ) is refined: R e(Sc-F) = 1.842 Å. The atomization enthalpies Δat H 298 0 of ScF k molecules are 139.9 kcal/mol, 289.0 kcal/mol, and 444.8 kcal/mol for k = 1, 2, 3 respectively.  相似文献   

12.
In terms of the density functional theory using the B3LYP functional, 1,2,3,4,5,6,7-heptaphenylcycloheptatriene was shown to be the most stable in the boat conformation of the cycloheptatriene ring with the H atom in the equatorial position. 1,5-Sigmatropic shifts of the H atom along the seven-membered ring perimeter take place when it is in the axial position through the asymmetric transition state with the barrier ΔE ZPE = 28.7 kcal mol?1. The H atom can attain the axial position upon inversion of the seven-membered ring, which is accompanied by the orthogonal turn of the phenyl group at the sp3-hybridized C atom (ΔE ZPE = 22.6 kcal mol?1). The energy barrier to the circular rearrangement of the H atom (ΔE ZPE = 32.2 kcal mol?1) explains formation of isomers during the high-temperature synthesis of di(p-tolyl)pentaphenylcycloheptatriene. The barrier to the 1,5-sigmatropic shifts of the phenyl group is 19.7 kcal mol?1 higher than that for the competing shifts of the H atom.  相似文献   

13.
A DFT quantum-chemical study of NO adsorption and reactivity on the Cu20 and Cu16 metal clusters showed that only the molecular form of NO is stabilized on the copper surface. The heat of monomolecular adsorption was calculated to be ΔH m = ?49.9 kJ/mol, while dissociative adsorption of NO is energetically unfavorable, ΔH d = + 15.7 kJ/mol, and dissociation demands a very high activation energy, E a = + 125.4 kJ/mol. Because of the absence of NO dissociation on the copper surface, the formation mechanism of the reduction products, N2 and N2O, is debatable since the surface reaction ultimately leads to N-O bond cleavage. As the reaction occurs with a very low activation energy, E a = 7.3 kJ/mol, interpretation of the NO direct reduction mechanism is both an important and intriguing problem because the binding energy in the NO molecule is high (630 kJ/mol) and the experimental studies revealed only physically adsorbed forms on the copper surface. It was found that the formation mechanism of the N2 and N2O reduction products involves formation (on the copper surface) of the (OadN-NOad) dimer intermediate that is chemisorbed via the oxygen atoms and characterized by a stable N-N bond (r N-N ~1.3 Å). The N-N binding between the adsorbed NO molecules occurs through electron-accepting interaction between the oxygen atoms in NO and the metal atoms on the “defective” copper surface. The electronic structure of the (OadN-NOad) surface dimer is characterized by excess electron density (ON-NO)δ? and high reactivity in N-Oad bond dissociation. The calculated activation energy of the destruction of the chemisorbed intermediate (OadN-NOad) is very low (E a = 5–10 kJ/mol), which shows that it is kinetically unstable against the instantaneous release of the N2 and N2O reduction products into the gas phase and cannot be identified by modern experimental methods of metal surface studies. At the same time, on the MgO surface and in the individual (Ph3P)2Pt(O2N2) complex, a stable (OadN-NOad) dimer was revealed experimentally.  相似文献   

14.
In this work, the encapsulations of halide ions including F?, Cl?, and Br? by cyclic peptide nanocapsule as ion carrier (F?, Cl?, and Br? @(Ala4...Ala4)) were investigated using the dispersion corrected density functional theory (DFT) employing CAM-B3LYP functional and the 6–311?+?G (d, p) basis set in the gas phase. The electronic binding energy (Ebind), binding enthalpy (Hbind), and binding Gibbs free energy (Gbind) for each anion were calculated and showed that the stability order of the complexes based on their calculated Ebind is F??>?Cl??>?Br? @(Ala4...Ala4). The calculated value of Gbind for F? @(Ala4...Ala4) was ??29.77 kcal/mol showing the formation of this complex is thermodynamically favorable while the formation of Br? @(Ala4...Ala4) is 14.35 kcal/mol which shows that the encapsulation of Br? is not possible. The calculated value of Gbind for Cl? @(Ala4...Ala4) was ??0.57 kcal/mol which shows that Cl? ion can be reversibly stored inside the nanocapsule. The NBO analysis was also performed to investigate the charge transfer between two cyclic peptides in the complexes and also between the anion and the nanocapsule. The NBO analysis showed that the strongest hydrogen bonds between two cyclic peptides are in the complex.  相似文献   

15.
Density functional theory was used to study model ethylene reactions with CpTiIIIEt+A? (A? = CH3B(C6F5) 3 ? , or B(C6F5) 4 ? ; A? can be absent) compounds. The polymerization of ethylene on an isolated CpTiEt+ cation is hindered because of equilibrium between the CpTi(C2H4)Et+ primary complex and the primary product of CpTiBu+ insertion. At the same time, the polymerization of ethylene on CpTiEt+A? ion pairs (A? = CH3B(C6F5) 3 ? or B(C6F5) 4 ? ) is thermodynamically allowed (ΔE from ?26.2 to ?25.6 kcal/mol and ΔG 298 from ?10.9 to ?10.4 kcal/mol) and is not related to overcoming substantial energy barriers (ΔE # = 8.2?12.3 kcal/mol and ΔG 298 ) = 7.8?13.3 kcal/mol). The degree of polymerization can be low because of the effective occurrence of polymer chain termination by hydrogen transfer from the polymer chain to the monomer.  相似文献   

16.
The conformational properties of p-n-propyloxybenzoic acid and p-n-propyloxy-p′-cyanobiphenyl molecules, which can exhibit liquid crystalline properties in the formation of Н-complexes, are studied (DFT/B3LYP)/cc-pVTZ method). It is found that a molecule of p-n-propyloxybenzoic acid has 16 conformers that can be divided into four groups with respect to relative energies (0 kcal/mol, 1.6 kcal/mol, 6.5 kcal/mol, and 8.1 kcal/mol), and a molecule of p-n-propyloxy-p′-cyanobiphenyl has six conformers with relative energies of 0 kcal/mol (two conformers, φ(СPh–O–C–C)=180°) and 1.6 kcal/mol (four conformers, φ(СPh–O–C–C)=64.4°). In all conformers of the 3-AOCB molecule, phenyl rings are turned at 35° relative to each other. A conformation with the planar arrangement of two rings has a higher energy by 1.5 kcal/mol. Barriers to the internal rotation of different groups are determined and it is established that the structural nonrigidity of the molecules is mainly due to the possible rotation of the–C2Н5 moiety about the C–C bond. It is shown that with increasing temperature the vibrational amplitudes of the OC3H7 substituent, which enhance the probabilities of transitions between the conformers, become appreciably larger. It is found that p-n-propyloxybenzoic acid and p-n-propyloxy-p′-cyanobiphenyl can form Н-complexes with the medium hydrogen bond. Two types of the structural organization of Н-complexes are considered: linear and angular. The similarity of energies of Н-complexes with different structures (NBO analysis) can be the reason for the occurrence of two liquid crystalline subphases of p-n-propyloxybenzoic acid and p-n-propyloxy-p′-cyanobiphenyl system.  相似文献   

17.
In this study dibenzylidene ketone derivatives (2E,5E)-2-(4-methoxybenzylidene)-5-(4-nitrobenzylidene) cyclopentanone (AK-1a) and (1E,4E)-4-(4-nitrobenzylidene)-1-(4-nitrophenyl) oct-1-en-3-one (AK-2a) were newly synthesized, inspired from curcuminoids natural origin. Novel scheme was used for synthesis of AK-1a and AK-2a. The synthesized compounds were characterized by spectroscopic techniques. AK-1a and AK-2a showed high computational affinities (E-value >???9.0 kcal/mol) against cyclooxygenase-1, cyclooxygenase-2, proteinase-activated receptor 1 and vitamin K epoxide reductase. AK-1a and AK-2a showed moderate docking affinities (E-value >???8.0 kcal/mol) against mu receptor, kappa receptor, delta receptor, human capsaicin receptor, glycoprotein IIb/IIIa, prostacyclin receptor I2, antithrombin-III, factor-II and factor-X. AK-1a and AK-2a showed lower affinities (E-value >???7.0 kcal/mol) against purinoceptor-3, glycoprotein-VI and purinergic receptor P2Y12. In analgesic activity, AK-1a and AK-2a decreased numbers of acetic acid-induced writhes (P?<?0.001 vs. saline group) in mice. AK-1a and AK-2a significantly prolonged the latency time of mice (P?<?0.05, P?<?0.01 and P?<?0.001 vs. saline group) in hotplate assay. AK-1a and AK-2a inhibited arachidonic acid and adenosine diphosphate induced platelet aggregation with IC50 values of 65.2, 37.7, 750.4 and 422 µM respectively. At 30, 100, 300 and 1000 µM concentrations, AK-1a and AK-2a increased plasma recalcification time (P?<?0.001 and P?<?0.001 vs. saline group) respectively. At 100, 300 and 1000 µg/kg doses, AK-1a and AK-2a effectively prolonged bleeding time (P?<?0.001 and P?<?0.01 vs. saline group) respectively. Thus in-silico, in-vitro and in-vivo investigation of AK-1a and AK-2a reports their analgesic, antiplatelet and anticoagulant actions.  相似文献   

18.
Molecular properties are computed as responses to perturbations (energy derivatives) in coupled-cluster (CC)/many-body perturbation theory (MBPT) models. Here, the CC/MBPT energy derivative with respect to a general two-electron (2-e) perturbation is assembled from gradient theory for 2-e property evaluation, including the electron repulsion energy. The correlation energy (?E) is shown to be the sum of response kinetic (?T), electron–nuclear attraction (?V), and electron repulsion (?V ee ) energies. Thus, evaluation of total V ee for energy component analysis is simple: For total energy (E), total 1-e responses T and V, and nuclear–nuclear repulsion energy (V NN ), V ee  = E ? V NN  ? T ? V is the true 2-e response value. Component energy analysis is illustrated in an assessment of steric repulsion in ethane’s rotational barrier. Earlier SCF-based results (Bader et al. in J Am Chem Soc 112:6530, 1990) are corroborated: The higher-energy eclipsed geometry is favored versus staggered in the two repulsion energies (V NN and V ee ), while decisively disfavored in electron–nuclear attraction energy (V). Our best quality calculations (CCSD/cc-pVQZ) attain practical Virial Theorem compliance (i.e., agreement among the kinetic energy, potential energy, and total energy representations) in assigning 2.70 ± 0.06 to the barrier height; ?195.80 kcal/mol is assigned to the drop in “steric” repulsion upon going to the eclipsed geometry. Steric repulsion is not responsible for any fraction of the ~3 kcal/mol barrier.  相似文献   

19.
The anilide anion (m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion (m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion (m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective “cooling” gas and reduces the internal energy of reactant ions.
Graphical Abstract ?
  相似文献   

20.
Conformational analysis of eight-membered P,N-heterocycles (P2NR2R') in the solution has been performed by means of NMR spectroscopy and quantum chemical calculations. The equilibrium of the С2-symmetrical (crown, major) and Сs-symmetrical (chair-boat, minor) forms of the compounds has been revealed, the transition barriers being of about 12 kcal/mol. The presence of an aromatic substituent at the nitrogen atom significantly shifts the equilibrium towards the dominating form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号