首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron screening corrections to the cross sections for low energy scattering of muonic hydrogen on hydrogen atoms are calculated. It is shown that the presence of the electron influences considerably the elastic cross sections at collision energies below 1 eV. This influence is relatively small for the spin-flip and isotopic exchange processes.  相似文献   

2.
In the present work, we present both theoretical differential and total cross sections for the elastic scattering process of positrons and electrons in liquid and vapour water for energies ranging from 10 eV to 10 keV. The calculations are performed in the partial-wave formalism by means of a complex interaction potential taking into account static potential as well as fine effects like exchange and polarization contributions. The theoretical results obtained in this free-parameter quantum-mechanical treatment are compared to available experimental data and good agreement is generally observed. Moreover, quantitative differences are reported between the positron and electron scattering, in vapour as well as in liquid water.  相似文献   

3.
Single and double differential ionization cross sections for the production of ions resulting from dissociative, single and double ionization of SF(6) by electron impact have been calculated using a semiempirical formulation based on the Jain-Khare approach. In addition, triple differential cross sections have been obtained for some of the doubly charged fragment ions at an incident electron energy of 100, 150, and 200 eV, respectively, and a fixed scattering angle of 30 degrees. As no previous data seem to exist for differential cross sections we have derived from these differential cross sections corresponding partial and total ionization cross sections from threshold up to 900 eV and compared those with the available theoretical and experimental data.  相似文献   

4.
We discuss doubly differential cross-section experiments for electron bremsstrahlung from free gas atom and thin-film targets for electron energies of 100 keV or less. We compare cross-section ratios for different target atoms with two theoretical models: ordinary bremsstrahlung and total bremsstrahlung calculated in the stripping approximation. Ratios of cross sections have been used to improve the comparison between experiment and theory when only relative cross sections are available or when the error in the absolute cross section is large. We also discuss additional background processes that may be more important in gas target experiments.  相似文献   

5.
We present a joint theoretical-experimental study on electron scattering by methanol (CH(3)OH) and ethanol (C(2)H(5)OH) in a wide energy range. Experimental differential, integral and momentum-transfer cross sections for elastic electron scattering by ethanol are reported in the 100-1000 eV energy range. The experimental angular distributions of the energy-selected electrons are measured and converted to absolute cross sections using the relative flow technique. Moreover, elastic, total, and total absorption cross sections for both alcohols are calculated in the 1-500 eV energy range. A complex optical potential is used to represent the dynamics of the electron-alcohol interaction, whereas the scattering equations are solved iteratively using the Pade?'s approximant technique. Our calculated data agree well with those obtained using the Schwinger multichannel method at energies up to 20 eV. Discrepancies at high energies indicate the importance of absorption effects, included in our calculations. In general, the comparison between our theoretical and experimental results, as well as with other experimental data available in the literature, also show good agreement. Nevertheless, the discrepancy between the theoretical and experimental total cross sections at low incident energies suggests that the experimental cross sections measured using the transmission technique for polar targets should be reviewed.  相似文献   

6.
We report electron impact total cross sections, Q(T), for e-N(2)O scattering over an extensive range of impact energies approximately from 0.1 eV to 2000 eV. We employ an ab initio calculation using R-matrix formalism below the ionization threshold of the target and above it we use the well established spherical complex optical potential to compute the cross sections. Total cross section is obtained as a sum of total elastic and total electronic excitation cross sections below the ionization threshold and above the ionization threshold as a sum of total elastic and total inelastic cross sections. Ample cross section data for e-N(2)O scattering are available at low impact energies and hence meaningful comparisons are made. Good agreement is observed with the available theoretical as well as experimental results over the entire energy range studied here.  相似文献   

7.
The role of Coulomb-correlation in electron impact ionization of atomic hydrogen is investigated. Triple differential cross sections are calculated using the first order multiple scattering theory taking into account the propper asymptotic behaviour of the final state wavefunction. A semi-empirical procedure is outlined to choose the effective charges consistent with several physically required limits. A comparison with recent experimental data is made; the observed agreement strongly suggests the importance of asymptotic Coulomb-correlation in ionization even at high energies. The first order approximation used here for the hydrogen case is easily generalizable for ionization of several electron atoms at not too large scattering angles and not too low incident energies.  相似文献   

8.
Low energy experimental and theoretical triple differential cross sections for the highest occupied molecular orbital of methane (1t(2)) and for the 2p atomic orbital of neon are presented and compared. These targets are iso-electronic, each containing 10 electrons and the chosen orbital within each target has p-electron character. Observation of the differences and similarities of the cross sections for these two species hence gives insight into the different scattering mechanisms occurring for atomic and molecular targets. The experiments used perpendicular, symmetric kinematics with outgoing electron energies between 1.5 eV and 30 eV for CH(4) and 2.5 eV and 25 eV for neon. The experimental data from these targets are compared with theoretical predictions using a distorted-wave Born approximation. Reasonably good agreement is seen between the experiment and theory for neon while mixed results are observed for CH(4). This is most likely due to approximations of the target orientation made within the model.  相似文献   

9.
In this paper, we present a theoretical approach to calculate differential and total ionization cross sections of polyatomic molecules by fast electron impact. More exactly, we have studied the ionization of ammonia (NH(3)) and methane (CH(4)) molecules, and previous results concerning the H(2)O molecule ionization are reported for comparison. The calculations are performed in the distorted wave Born approximation without exchange by employing the independent electron model. The molecular target wave functions are described by linear combinations of atomic orbitals. To describe the interaction between the inactive target electrons and the slow ejected electron, we have introduced a distortion via an effective potential calculated for each molecular orbital. The present theoretical calculations agree well with a large set of existing experimental data in terms of multiple differential and total cross sections.  相似文献   

10.
The differential elastic scattering cross sections of N2 and O2 for 29 keV electrons have been measured. The experiment was performed using a Möllenstedt type energy analyzer to isolate the elastically scattered electrons. The difference between the measured results and calculations from molecular Hartree-Fock wave functions reveals the electron correlation in the molecules. Using the previously measured total scattering data, the inelastic scattering cross sections are derived. Several potential energies of the target are evaluated from the cross sections. Results at small angles are analyzed in terms of molecular moments and diamagnetic susceptibilities. The scattering behavior at small angles of the N2 measurement agrees well with several ab initio calculations.  相似文献   

11.
12.
The multiple scattering approach of Das and Seal, which was applied earlier to calculate the triple differential cross section for the ionization of atomic hydrogen by electrons is now used to calculate the double and the single differential cross sections for the same system. The range of the incident electron energy is taken to be 100–250 eV. The present results are compared with the measured results of Shyn and with the available distorted wave Born approximation results.  相似文献   

13.
We report experimental results for electron scattering from perfluorocyclobutane, c-C(4)F(8), obtained from measurements in our two laboratories. A set of differential, integral, and momentum transfer cross sections is provided for elastic scattering for incident electron energies from 1.5 to 100 eV. Inelastic scattering (vibrational excitation) cross sections have been measured for incident electron energies of 1.5, 2, 5, 6, and 7 eV. In order to investigate the role of intermediate negative ions (resonances) in the scattering process we have also measured an excitation function for elastic scattering and vibrational excitation of the ground electronic state of C(4)F(8) for incident energies between 0.6 and 20 eV. These results are compared with the limited amount of data available in the literature for scattering from this molecule.  相似文献   

14.
Quantification of surface‐ and bulk‐analytical methods, e.g. Auger‐electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), electron‐probe microanalysis (EPMA), and analytical electron microscopy (AEM), requires knowledge of reliable elastic‐scattering cross sections for describing electron transport in solids. Cross sections for elastic scattering of electrons and positrons by atoms, ions, and molecules can be calculated with the recently developed code ELSEPA (Elastic Scattering of Electrons and Positrons by Atoms) for kinetic energies of the projectile from 10 eV to 50 eV. These calculations can be made after appropriate selection of the basic input parameters: electron‐density distribution, a model for the nuclear‐charge distribution, and a model for the electron‐exchange potential (the latter option applies only to scattering of electrons). Additionally, the correlation‐polarization potential and an imaginary absorption potential can be considered in the calculations. We report comparisons of calculated differential elastic‐scattering cross sections (DCSs) for silicon and gold at selected energies (500 eV, 5 keV, 30 keV) relevant to AES, XPS, EPMA, and AEM, and at 100 MeV as a limiting case. The DCSs for electrons and positrons differ considerably, particularly for medium‐ and high‐atomic‐number elements and for kinetic energies below about 5 keV. The DCSs for positrons are always monotonically decreasing functions of the scattering angle, while the DCSs for electrons have a diffraction‐like structure with several minima and maxima. A significant influence of the electron‐exchange correction is observed at 500 eV. The correlation‐polarization correction is significant for small scattering angles at 500 eV, while the absorption correction is important at energies below about 10 keV. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Low-energy elastic, differential and integral, collision cross sections for electron scattering from rare gas atoms are calculated using a simplified model treatment of the short-range polarisation forces already applied successfully to helium atoms (De Fazio et al., 1994). Static and exchange contributions to the total interaction are treated exactly, while a global semiclassical model provides a simple procedure for the short-range damping of all the long-range adiabatic terms which asymptotically lead to the polarisation forces. The results are compared with several available experimental findings for Ne and Ar atoms. The higher order terms in the perturbation expansion are found to have little effect on the cross sections and then only at low energies and in the small-angle region.Von Humboldt Stiftung Forschungspreisträger (1992)  相似文献   

16.
A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01eV to 1MeV for atoms of Z=1–100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data.First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by “adjusted” Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons.The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of −10−8.  相似文献   

17.
The ground state potential energy curves for protons interacting with Ar and Ne atoms are determined by the analysis of new, highly accurate measurements of the elastic differential cross sections at a laboratory collision energy of 14.8 eV. Accompanying theoretical results from SCF-CI calculations are used as starting points to generate analytic potentials that are able to fit all available experimental cross sections for both systems. The final results provide the full shape of the potential curves and give the best existing fit to the measured cross sections for elastic scattering at several energies from 2eV to 30eV.  相似文献   

18.
We report experimental results for electron scattering from tetrafluoroethylene, C2F4, obtained from measurements in two laboratories. An extensive set of differential, integral, and momentum transfer cross sections is provided for elastic scattering for incident electron energies from 1 to 100 eV and inelastic (vibrational excitation) scattering for incident electron energies at 3, 6, 7.5, 8, and 15 eV, and for scattering angles ranging from 10 degrees to 130 degrees. To highlight the role of intermediate negative ions (resonances) in the scattering process we have also measured excitation functions for elastic scattering and vibrational excitation of the ground electronic state of C2F4 for incident energies between 1.5 and 20 eV. Our results are compared with recent theoretical calculations and a limited number of other experimental results.  相似文献   

19.
State-to-state differential cross sections (DCSs) for rotationally inelastic scattering of H(2)O by H(2) have been measured at 71.2 meV (574 cm(-1)) and 44.8 meV (361 cm(-1)) collision energy using crossed molecular beams combined with velocity map imaging. A molecular beam containing variable compositions of the (J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of argon seeded with water vapor that is cooled by supersonic expansion to its lowest para or ortho rotational levels (J(KaKc) = 0(00) and 1(01), respectively). Angular speed distributions of fully specified rotationally excited final states are obtained using velocity map imaging. Relative integral cross sections are obtained by integrating the DCSs taken with the same experimental conditions. Experimental state-specific DCSs are compared with predictions from fully quantum scattering calculations on the most complete H(2)O-H(2) potential energy surface. Comparison of relative total cross sections and state-specific DCSs show excellent agreement with theory in almost all details.  相似文献   

20.
R-matrix calculations on electron collisions with the purine bases found in DNA and RNA (i.e., adenine and guanine) are presented. Resonant anion states of these systems are identified by employing different approximation levels of ab initio theoretical methods, such as the static exchange, the static exchange plus polarization, and the close-coupling methods. The results are compared with other available calculations and experiments. All of these ab initio approximations, which we refer to as a scattering "model," give four shape resonances of (2)A' (π) symmetry within the energy range of 10 eV for both molecules. For adenine, the most sophisticated method, the close-coupling model, gives two very narrow (2)A' (σ) symmetry Feshbach-type resonances at energies above 5 eV. Quantitative results for the total elastic and electronic excitation cross sections are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号