首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rolf Henniger  Dominik Obrist  Leonhard Kleiser 《PAMM》2007,7(1):4100009-4100010
An iterative solution scheme for the incompressible Navier–Stokes equations is presented. It is split into inner and outer iteration cycles, such that the momentum and continuity equations are satisfied within prescribed accuracy. The spatial discretization is based on high-order finite differences which makes it well suited for massively parallel computers. This is demonstrated in a scaling test. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
4.
5.
6.
This paper is devoted to the evolution of Lions’s weak solutions to the inhomogeneous Navier–Stokes equations. After proving that the kinetic energy is eventually bounded, we obtain a weakly compact global attractor that all Lions’s weak solutions approach as time tends to infinity. Furthermore, the existence of attracting sets in strong topology is established for short trajectories satisfying an additional compactness condition on the density.  相似文献   

7.
8.
9.
M. Scholle  A. Haas 《PAMM》2010,10(1):483-484
As wellknown, Bernoulli's equation is obtained as the first integral of Euler's equations in the absence of vorticity. Even in case of non-vanishing vorticity, a first integral from Euler's equations is obtained by using the so called Clebsch transformation [1] for inviscid flows. In contrast to this, a generalisation of this procedure towards viscous flows has not been established so far. In the present paper a first integral of Navier-Stokes equations is constructed in the case of two-dimensional flow by making use of an alternative representation of the fields in terms of complex coordinates and introducing a potential representation for the pressure. The associated boundary conditions are also considered. The first integral is a suitable tool for the development of new analytical methods and numerical codes in fluid dynamics. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The Yosida method was introduced in (Quarteroni et al., to appear) for the numerical approximation of the incompressible unsteady Navier–Stokes equations. From the algebraic viewpoint, it can be regarded as an inexact factorization of the matrix arising from the space and time discretization of the problem. However, its differential interpretation resides on an elliptic stabilization of the continuity equation through the Yosida regularization of the Laplacian (see (Brezis, 1983, Ciarlet and Lions, 1991)). The motivation of this method as well as an extensive numerical validation were given in (Quarteroni et al., to appear).In this paper we carry out the analysis of this scheme. In particular, we consider a first-order time advancing unsplit method. In the case of the Stokes problem, we prove unconditional stability and moreover that the splitting error introduced by the Yosida scheme does not affect the overall accuracy of the solution, which remains linear with respect to the time step. Some numerical experiments, for both the Stokes and Navier–Stokes equations, are presented in order to substantiate our theoretical results.  相似文献   

11.
12.
In this paper we consider the incompressible Navier–Stokes equations with a density-dependent viscosity in a bounded domain Ω of Rn(n=2,3). We prove the local existence of unique strong solutions for all initial data satisfying a natural compatibility condition. This condition is also necessary for a very general initial data. Moreover, we provide a blow-up criterion for the regularity of the strong solution. For these results, the initial density need not be strictly positive. It may vanish in an open subset of Ω.  相似文献   

13.
We prove that the density of the law of any finite-dimensional projection of solutions of the Navier–Stokes equations with noise in dimension three is Hölder continuous in time with values in the natural space L 1. When considered with values in Besov spaces, Hölder continuity still holds. The Hölder exponents correspond, up to arbitrarily small corrections, to the expected, at least with the known regularity, diffusive scaling.  相似文献   

14.
15.
Shixiang Ma 《Applicable analysis》2013,92(11):2320-2334
In this article, we study the large-time asymptotic behaviour of contact wave for the Cauchy problem of one-dimensional compressible Navier–Stokes equations with zero viscosity. When the Riemann problem for the Euler system admits a contact discontinuity solution, we can construct a contact wave, which approximates the contact discontinuity on any finite-time interval for small heat conduction and then runs away from it for large time, and prove that it is nonlinearly stable provided that the strength of contact discontinuity and the perturbation of the initial data are suitably small.  相似文献   

16.
This article presents a splitting technique for solving the time dependent incompressible Navier–Stokes equations. Using nested finite element spaces which can be interpreted as a postprocessing step the splitting method is of more than second order accuracy in time. The integration of adaptive methods in space and time in the splitting are discussed. In this algorithm, a gradient recovery technique is used to compute boundary conditions for the pressure and to achieve a higher convergence order for the gradient at different points of the algorithm. Results on the ‘Flow around a cylinder’s- and the ‘Driven Cavity’s-problem are presented.  相似文献   

17.
In this paper, we prove optimal a priori error estimates for the pseudostress-velocity mixed finite element formulation of the incompressible Navier–Stokes equations, thus improve the result of Cai et al. (SINUM 2010). This is achieved by applying Petrov–Galerkin type Brezzi–Rappaz–Raviart theory.  相似文献   

18.
We consider a mixed boundary problem for the Navier–Stokes equations in a bounded Lipschitz two-dimensional domain: we assign a Dirichlet condition on the curve portion of the boundary and a slip zero condition on its straight portion. We prove that the problem has a solution provided the boundary datum and the body force belong to a Lebesgue’s space and to the Hardy space respectively.  相似文献   

19.
We study bounded ancient solutions of the Navier–Stokes equations. These are solutions with bounded velocity defined in R n × (−1, 0). In two space dimensions we prove that such solutions are either constant or of the form u(x, t) = b(t), depending on the exact definition of admissible solutions. The general 3-dimensional problem seems to be out of reach of existing techniques, but partial results can be obtained in the case of axisymmetric solutions. We apply these results to some scenarios of potential singularity formation for axi-symmetric solutions, and obtain extensions of results in a recent paper by Chen, Strain, Tsai and Yau [4].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号