首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we propose a scheme for choosing basis functions for quantum dynamics calculations. Direct product bases are frequently used. The number of direct product functions required to converge a spectrum, compute a rate constant, etc., is so large that direct product calculations are impossible for molecules or reacting systems with more than four atoms. It is common to extract a smaller working basis from a huge direct product basis by removing some of the product functions. We advocate a build and prune strategy of this type. The one-dimensional (1D) functions from which we build the direct product basis are chosen to satisfy two conditions: (1) they nearly diagonalize the full Hamiltonian matrix; (2) they minimize off-diagonal matrix elements that couple basis functions with diagonal elements close to those of the energy levels we wish to compute. By imposing these conditions we increase the number of product functions that can be removed from the multidimensional basis without degrading the accuracy of computed energy levels. Two basic types of 1D basis functions are in common use: eigenfunctions of 1D Hamiltonians and discrete variable representation (DVR) functions. Both have advantages and disadvantages. The 1D functions we propose are intermediate between the 1D eigenfunction functions and the DVR functions. If the coupling is very weak, they are very nearly 1D eigenfunction functions. As the strength of the coupling is increased they resemble more closely DVR functions. We assess the usefulness of our basis by applying it to model 6D, 8D, and 16D Hamiltonians with various coupling strengths. We find approximately linear scaling.  相似文献   

2.
Two methods are developed, when solving the related time-independent Schrodinger equation (TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic molecule given in orthogonal internal coordinates. The first method provides a mathematically correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear combinations of functions of a three-dimensional nondirect-product basis, where basis functions are formed by coupling Bessel-DVR functions, where DVR stands for discrete variable representation, depending on distance-type coordinates and Legendre polynomials depending on angle bending. In the second method one of the singular terms related to a distance-type coordinate, deemed to be unimportant for spectroscopic applications, is given no special treatment. Here the basis set is obtained by taking the direct product of a one-dimensional DVR basis with a two-dimensional nondirect-product basis, the latter formed by coupling Bessel-DVR functions and Legendre polynomials. With the basis functions defined, matrix representations of the TISE are set up and solved numerically to obtain the vibrational energy levels of H3+. The numerical calculations show that the first method treating all singularities is computationally inefficient, while the second method treating properly only the singularities having physical importance is quite efficient.  相似文献   

3.
Two quantum mechanical Hamiltonians have been derived in orthogonal polyspherical coordinates, which can be formed by Jacobi and/or Radau vectors etc., for the study of the vibrational spectra of six-atom molecules. The Hamiltonians are expressed in an explicit Hermitian form in the spatial representation. Their matrix representations are described in both full discrete variable representation (DVR) and mixed DVR/nondirect product finite basis representation (FBR) bases. The two-layer Lanczos iteration algorithm [H.-G. Yu, J. Chem. Phys. 117, 8190 (2002)] is employed to solve the eigenvalue problem of the system. A strategy regarding how to carry out the Hamiltonian-vector products for a high-dimensional problem is discussed. By exploiting the inversion symmetry of molecules, a unitary sequential 1D matrix-vector multiplication algorithm is proposed to perform the action of the Hamiltonian on the wavefunction in a symmetrically adapted DVR or FBR basis in the azimuthal angular variables. An application to the vibrational energy levels of the molecular hydrogen trimer (H2)3 in full dimension (12D) is presented. Results show that the rigid-H2 approximation can underestimate the binding energy of the trimer by 27%. Finally, it is demonstrated that the two-layer Lanczos algorithm is also capable of computing the eigenvectors of the system with minor effort.  相似文献   

4.
A variational finite basis representation/discrete variable representation (FBR/DVR) Hamiltonian operator has been introduced. By calculating its matrix elements exactly one obtains, depending on the choice of the basis set, either a variational FBR or a variational DVR. The domain of grid points on which the FBR/DVR is variational has been shown to consist of the subsets of the set of grid points one obtains by diagonalizing commuting variational basis representations of the coordinate operators. The variational property implies that the optimal of the subsets of a fixed number of points, i.e., the subset which gives the possible highest accuracy eigenpairs, gives the DVR of the smallest trace. The symmetry properties of the variational FBR/DVR Hamiltonian operator are analyzed and methods to incorporate symmetry into FBR/DVR calculations are discussed. It is shown how the Fourier-basis FBR/DVR suitable to solving periodic systems arise within the theory presented. Numerical examples are given to illustrate the theoretical results. The use of variational effective Hamiltonian and coordinate operators has been instrumental in this study. They have been introduced in a novel way by exploiting quasi-Hermiticity.  相似文献   

5.
Computational efficiencies of the discrete (pseudospectral, collocation) and continuous (spectral, Rayleigh–Ritz, Galerkin) variable representations of the scaled Hermite–Weber basis in finding the energy eigenvalues of Schrödinger operators with several potential functions have been compared. It is well known that the so-called differentiation matrices are neither skew-symmetric nor symmetric in a pseudospectral formulation of a differential equation, unlike their Rayleigh–Ritz counterparts. In spite of this fact, it is shown here that the spectra of matrix Hamiltonians generated by Hermite collocation method may be determined by way of diagonalizing symmetric matrices. Furthermore, the symmetric matrix elements do not require the evaluation of Hermite polynomials at the grid points. Surprisingly, the present numerical results suggest that the convergence rates of collocation and Rayleigh–Ritz methods are entirely the same.AMS subject classification: 65L60, 81Q05, 65L15, 34L40, 42C10  相似文献   

6.
The calculation of rovibrational transition energies and intensities is often hampered by the fact that vibrational states are strongly coupled by Coriolis terms. Because it invalidates the use of perturbation theory for the purpose of decoupling these states, the coupling makes it difficult to analyze spectra and to extract information from them. One either ignores the problem and hopes that the effect of the coupling is minimal or one is forced to diagonalize effective rovibrational matrices (rather than diagonalizing effective rotational matrices). In this paper we apply a procedure, based on a quantum mechanical canonical transformation for deriving decoupled effective rotational Hamiltonians. In previous papers we have used this technique to compute energy levels. In this paper we show that it can also be applied to determine intensities. The ideas are applied to the ethylene molecule.  相似文献   

7.
In this paper we improve the product simultaneous diagonalization (SD) basis method we previously proposed [J. Chem. Phys. 122, 134101 (2005)] and applied to solve the Schrodinger equation for the motion of nuclei on a potential surface. The improved method is tested using coupled complicated Hamiltonians with as many as 16 coordinates for which we can easily find numerically exact solutions. In a basis of sorted products of one-dimensional (1D) SD functions the Hamiltonian matrix is nearly diagonal. The localization of the 1D SD functions for coordinate qc depends on a parameter we denote alphac. In this paper we present a trace minimization scheme for choosing alphac to nearly block diagonalize the Hamiltonian matrix. Near-block diagonality makes it possible to truncate the matrix without degrading the accuracy of the lowest energy levels. We show that in the sorted product SD basis perturbation theory works extremely well. The trace minimization scheme is general and easy to implement.  相似文献   

8.
The method of optimal generalized finite basis and discrete variable representations (FBR and DVR) generalizes the standard, Gaussian quadrature grid-classical orthonormal polynomial basis-based FBR/DVR method to general sets of grid points and to general, nondirect product, and/or nonpolynomial bases. Here, it is shown how an optimal set of grid points can be obtained for an optimal generalized FBR/DVR calculation with a given truncated basis. Basis set optimized and potential optimized grids are defined. The optimized grids are shown to minimize a function of grid points derived by relating the optimal generalized FBR of a Hamiltonian operator to a non-Hermitian effective Hamiltonian matrix. Locating the global minimum of this function can be reduced to finding the zeros of a function in the case of one dimensional problems and to solving a system of D nonlinear equations repeatedly in the case of D>1 dimensional problems when there is an equal number of grid points and basis functions. Gaussian quadrature grids are shown to be basis optimized grids. It is demonstrated by a numerical example that an optimal generalized FBR/DVR calculation of the eigenvalues of a Hamiltonian operator with potential optimized grids can have orders of magnitude higher accuracy than a variational calculation employing the same truncated basis. Nevertheless, for numerical integration with the optimal generalized FBR quadrature rule basis optimized grids are the best among grids of the same number of points. The notions of Gaussian quadrature and Gaussian quadrature accuracy are extended to general, multivariable basis functions.  相似文献   

9.
The modified discrete variable representation for three-dimension (DVR3D) method was applied to the determination of the vibrational energy levels of the fundamental electronic state of H2S and H2O. The Hamiltonian was expressed in Jacobi coordinates and developed on a DVR basis for each internal coordinate. The angular coordinate used a DVR based on Legendre polynomials and the radial coordinates utilized a DVR based on sine basis functions. Successive diagonalization and truncation technique was used to reduce the size of the final Hamiltonian matrix to be diagonalized. Calculations were presented for H2S and H2O to demonstrate the accuracy of these algorithms.  相似文献   

10.
We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active functions changes in time. Two different types of localized basis functions are tested: discrete variable representation (DVR) functions, which are localized in position space, and phase-space localized (PSL) functions, which are localized in both position and momentum. The number of functions active at each point in time can be as much as an order of magnitude less for dynamical pruning than for static pruning, in reactive scattering calculations of H2 on the Pt(211) stepped surface. Scaling of the dynamically pruned PSL (DP-PSL) bases with dimension is considerably more favorable than for either the primitive (direct product) or DVR bases, and the DP-PSL basis set is predicted to be three orders of magnitude smaller than the primitive basis set in the current state-of-the-art six-dimensional reactive scattering calculations.  相似文献   

11.
The matrices of electrostatic and spin-orbit Hamiltonians for the system of a 2P atom interacting with a closed shell diatomic molecule in uncoupled, coupled, and complex-valued representations for electronic diabatic basis functions are rederived, and the unitary transformations connecting them are given explicitly. The links to previous derivations are established and existing inconsistencies are identified and eliminated. It is proven that the block-diagonalization of a 6 x 6 matrix of the electronic Hamiltonian is a result of using the basis functions with well-defined properties with respect to time reversal. Consideration of time-reversal symmetry also enforces phase consistency relevant for applications to multisurface reactive scattering and photodetachment spectroscopy calculations, as well as for perspective studies of inelastic effects in cold and ultracold environments. These and further developments are briefly sketched.  相似文献   

12.
The discrete variable representation method is applied to the determination of the rotation-vibration energy levels of the fundamental electronic state of NO2. The Hamiltonian is expressed in Johnson hyperspherical coordinates and developed on a DVR basis for each internal coordinate, while parity-adapted linear combinations of Wigner functions are used to describe the rotational motion. The diagonalization of the Hamiltonian matrix is performed using the Lanczos algorithm for large symmetric and Hermitian matrices. Results for rovibrational states up to J = 11 for the first five vibrational energy levels are presented. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian, called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic energies in terms of the singlet diabatic energies via Slater's rules and assuming constant ratios of Coulomb to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow one to deal with multibond reactions without having to include high-energy diabatic states. The global transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is constructed as the product of channel-specific transformation matrices, each one taken as the product of an asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions in a manner that provides a multibond generalization of the switch between Hund's cases in diatomic spectroscopy. The spin-orbit matrix elements in this representation are taken equal to their atomic values times a scaling function that depends on the internuclear distances. The spin-valence diabatic potential energy matrix is suitable for semiclassical dynamics simulations. Diagonalization of this matrix produces the spin-coupled adiabatic energies. For the sake of illustration, diabatic potential energy matrices are constructed along bond-fission coordinates for the HBr and the BrCH(2)Cl molecules. Comparison of the spin-coupled adiabatic energies obtained from the spin-valence diabatics with those obtained by ab initio calculations with geometry-dependent spin-orbit matrix elements shows that the new method is sufficiently accurate for practical purposes. The method formulated here should be most useful for systems with a large number of atoms, especially heavy atoms, and/or a large number of spin-coupled electronic states.  相似文献   

14.
The direct energy functional minimization problem in electronic structure theory, where the single-particle orbitals are optimized under the constraint of orthogonality, is explored. We present an orbital transformation based on an efficient expansion of the inverse factorization of the overlap matrix that keeps orbitals orthonormal. The orbital transformation maps the orthogonality constrained energy functional to an approximate unconstrained functional, which is correct to some order in a neighborhood of an orthogonal but approximate solution. A conjugate gradient scheme can then be used to find the ground state orbitals from the minimization of a sequence of transformed unconstrained electronic energy functionals. The technique provides an efficient, robust, and numerically stable approach to direct total energy minimization in first principles electronic structure theory based on tight-binding, Hartree-Fock, or density functional theory. For sparse problems, where both the orbitals and the effective single-particle Hamiltonians have sparse matrix representations, the effort scales linearly with the number of basis functions N in each iteration. For problems where only the overlap and Hamiltonian matrices are sparse the computational cost scales as O(M2N), where M is the number of occupied orbitals. We report a single point density functional energy calculation of a DNA decamer hydrated with 4003 water molecules under periodic boundary conditions. The DNA fragment containing a cis-syn thymine dimer is composed of 634 atoms and the whole system contains a total of 12,661 atoms and 103,333 spherical Gaussian basis functions.  相似文献   

15.
Finding multidimensional nondirect product discrete variable representations (DVRs) of Hamiltonian operators is one of the long standing challenges in computational quantum mechanics. The concept of a "DVR set" was introduced as a general framework for treating this problem by R. G. Littlejohn, M. Cargo, T. Carrington, Jr., K. A. Mitchell, and B. Poirier (J. Chem. Phys. 2002, 116, 8691). We present a general solution of the problem of calculating multidimensional DVR sets whose points are those of a known cubature formula. As an illustration, we calculate several new nondirect product cubature DVRs on the plane and on the sphere with up to 110 points. We also discuss simple and potentially very useful finite basis representations (FBRs), based on general (nonproduct) cubatures. Connections are drawn to a novel view on cubature presented by I. Degani, J. Schiff, and D. J. Tannor (Num. Math. 2005, 101, 479), in which commuting extensions of coordinate matrices play a central role. Our construction of DVR sets answers a problem left unresolved in the latter paper, namely, the problem of interpreting as function spaces the vector spaces on which commuting extensions act.  相似文献   

16.
A technique has been developed which in principle allows the determination of the full rotational-vibrational eigenspectrum of triatomic molecules by treating the important singularities present in the triatomic rotational-vibrational kinetic energy operator given in Jacobi coordinates and the R(1) embedding. The singular term related to the diatom-type coordinate, R(1), deemed to be unimportant for spectroscopic applications, is given no special attention. The work extends a previous [J. Chem. Phys., 2005, 122, 024101] vibration-only approach and employs a generalized finite basis representation (GFBR) resulting in a nonsymmetric Hamiltonian matrix [J. Chem. Phys., 2006, 124, 014110]. The basis set to be used is obtained by taking the direct product of a 1-D DVR basis, related to R(1), with a 5-D nondirect-product basis, the latter formed by coupling Bessel-DVR functions depending on the distance-type coordinate causing the singularity, associated Legendre polynomials depending on the Jacobi angle, and rotational functions depending on the three Euler angles. The robust implicitly restarted Arnoldi method within the ARPACK package is used for the determination of a number of eigenvalues of the nonsymmetric Hamiltonian matrix. The suitability of the proposed approach is shown by the determination of the rotational-vibrational energy levels of the ground electronic state of H(3)(+) somewhat above its barrier to linearity. Convergence of the eigenenergies is checked by an alternative approach, employing a Hamiltonian expressed in Radau coordinates, a standard direct-product basis, and no treatment of the singularities.  相似文献   

17.
In this paper we test a nondirect product discrete variable representation (DVR) method for solving the bend vibration problem and compare it with well-established direct product DVR and finite basis representation approaches.  相似文献   

18.
The low-lying electronic states of PtH were studied by all-electron one- and two-component variational calculations on the multireference CI levels. The orbital optimization is performed within a one-component formalism, whereas the further refinement of the wave functions follows two different schemes: The most demanding approach introduces spin–orbit coupling in the CI optimization step, giving a simultaneous treatment of electron correlation and spin–orbit coupling. The second, considerably less demanding approach, corresponds almost to a perturbational treatment, introducing spin–orbit coupling as a final step after the CI optimization by diagonalizing the resulting Hamiltonian matrix over CI states. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 53–64, 1998  相似文献   

19.
We present a numerically exact calculation of rovibrational levels of a five-atom molecule. Two contracted basis Lanczos strategies are proposed. The first and preferred strategy is a two-stage contraction. Products of eigenfunctions of a four-dimensional (4D) stretch problem and eigenfunctions of 5D bend-rotation problems, one for each K, are used as basis functions for computing eigenfunctions and eigenvalues (for each K) of the Hamiltonian without the Coriolis coupling term, denoted H0. Finally, energy levels of the full Hamiltonian are calculated in a basis of the eigenfunctions of H0. The second strategy is a one-stage contraction in which energy levels of the full Hamiltonian are computed in the product contracted basis (without first computing eigenfunctions of H0). The two-stage contraction strategy, albeit more complicated, has the crucial advantage that it is trivial to parallelize the calculation so that the CPU and memory costs are independent of J. For the one-stage contraction strategy the CPU and memory costs of the difficult part of the calculation scale linearly with J. We use the polar coordinates associated with orthogonal Radau vectors and spherical harmonic type rovibrational basis functions. A parity-adapted rovibrational basis suitable for a five-atom molecule is proposed and employed to obtain bend-rotation eigenfunctions in the first step of both contraction methods. The effectiveness of the two methods is demonstrated by calculating a large number of converged J = 1 rovibrational levels of methane using a global potential energy surface.  相似文献   

20.
dN离子在三角场中的基矢及有关矩阵元   总被引:1,自引:0,他引:1  
通过选用合适的单电子基矢, 使按群链[(O?D_3?C_3)×SU(2)]~N构成的多电子基矢, 成为dN体系D_3?C_3旋量群不可约表示的基矢或其两个一维不可约表示直和的基矢。讨论了有关矩阵元和顺磁参数的计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号