首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [NiBr(2)(bpy)(2)] (bpy = 2,2'-bipyridine) with organic phosphinic acids ArP(O)(OH)H [Ar = Ph, 2,4,6-trimethylphenyl (Mes), 9-anthryl (Ant)] leads to the formation of binuclear nickel(II) complexes with bridging ArP(H)O(2)(-) ligands. Crystal structures of the binuclear complexes [Ni(2)(μ-O(2)P(H)Ar)(2)(bpy)(4)]Br(2) (Ar = Ph, Mes, Ant) have been determined. In each structure, the metal ions have distorted octahedral coordination and are doubly bridged by two arylphosphinato ligands. Magnetic susceptibility measurements have shown that these complexes display strong antiferromagnetic coupling between the two nickel atoms at low temperatures, apparently similar to binuclear nickel(II) complexes with bridging carboxylato ligands. Cyclic voltammetry and in situ EPR spectroelectrochemistry show that these complexes can be electrochemically reduced and oxidized with the formation of Ni(I),Ni(0)/Ni(III) derivatives.  相似文献   

2.
[TpPh,MeNi(Cl)PzPh,MeH] (1) has been synthesized by the reaction of hydrotris(3-phenyl-5-methyl-pyrazol-1-yl) borate [TpPh,Me], NiCl2 · 6H2O and 3-phenyl-5-methyl-pyrazole [PzPh,MeH]. The reaction of 1 with variously substituted sodium pX–benzoates resulted in the formation of complexes of the type [TpPh,MeNi(p–X–OBz)PzPh,MeH] (X = H for 2, F for 3, Cl for 4, NO2 for 5, Me for 6, OMe for 7, OH for 8, CHO for 9 and CN for 10). Single crystal X-ray studies suggest that all these complexes have a five-coordinate metal center and the benzoate groups are monodentate in a square pyramidal geometry. The X-ray studies also reveal that the uncoordinated oxygen atom of the benzoate forms intramolecular hydrogen-bonds with the NH group of the coordinated pyrazole. The substituents present on the benzoate ring are involved in different types of intermolecular interactions and the complexes exhibit different crystal packing. Complexes 210 were tested for superoxide dismutase activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The static magnetic susceptibility of mononuclear trimethylacetate nickel complex Ni(NH2Ph)4(OOCCMe3)2 (3) and binuclear complexes Ni2(μ-OH2)(μ-OOCCMe3)2(OOCCMe3)2(dipy)2 (4) and Ni2(μ-OOCCMe3)4py2 (5) was measured in the temperature range of 2–300 K. The magnetic behavior of3 is typical of mononuclear complexes with the Ni11 atom in the octahedral environment. Numerical calculations of the temperature dependence of magnetic susceptibility with inclusion of isotropic exchange interactions (J) and single-ion initial splitting parameters showed that the magnetic behavior of complexes4 and 5 can be interpreted in terms of ferromagnetic (for4) and antiferromagnetic (for5) interactions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 437–442, March, 2000.  相似文献   

4.
Two series of mononuclear Ni(II) complexes of the formula (PNP)Ni(dithiolate) where PNP = R2PCH2N(CH3)CH2PR2, R = Et and Ph, have been synthesized containing dithiolate ligands that vary from five- to seven-membered chelate rings. Two series of dinuclear Ni(II) complexes of the formula {[(diphosphine)Ni]2(dithiolate)}(X)2 (X = BF4 or PF6) have been synthesized in which the chelate ring size of the dithiolate and diphosphine ligands have been systematically varied. The structures of the alkylated mononuclear complex, [(PNPEt)Ni(SC2H4SMe)]OTf, and the dinuclear complex, [(dppeNi)2(SC3H6S)](BF4)2, have been determined by X-ray diffraction studies. The complexes have been studied by cyclic voltammetry to determine how the half-wave potentials of the Ni(II/I) couples vary with chelate ring size of the ligands. For the mononuclear complexes, this potential becomes more positive as the natural bite angle of the dithiolate ligand increases. However, the potentials of the Ni(II/I) couples of the dinuclear complexes do not show a dependence on the chelate ring size of the ligands. Other aspects of the reduction chemistry of these complexes have been explored.  相似文献   

5.
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu72-OH2)63-O)6(adenine)6](NO3)2·6H2O (1) and [Cu22-H2O)2(adenine)2(H2O)4](NO3)4·2H2O (2) are reported. The heptanuclear compound is composed of a central octahedral CuO6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn–Teller distorted octahedral coordination characteristic of a d9 center. The study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.  相似文献   

6.
Two novel nickel(II) dinuclear complexes [Ni2(cyclam)2- (DTA)](ClO4)2 (1) and [Ni2(TAA)2(DTA)] (ClO4)2 (2) (TAA=N(CH2CH2NH2)3 , cyclam = 1,4,8,11-tetraazacyclotetradecane, DTA=dithiooxamide) have been prepared and studied by elemental analyses, i.r. and electronic spectra and magnetic measurements. The magnetic susceptibility temperature dependence was measured over the 77–300K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator (H=–2JS1S2) giving the exchange integral J=–23.09cm–1 for (1) and J= –26.0cm–1 for (2).  相似文献   

7.
8.
A detailed nuclear magnetic resonance (NMR) study was carried out on a series of paramagnetic, tetrahedrally coordinated nickel(II) dihalide complexes featuring chelating guanidine ligands. A complete assignment of the NMR signals for all complexes was achieved by sophisticated NMR experiments, including correlation spectra. The effects of halide exchange, as well as the variation in the guanidine-metal bite angles on the paramagnetic shifts, were assessed. The paramagnetic shift was derived with the aid of the diamagnetic NMR spectra of the analogous Zn complexes, which were synthesized for this purpose. The experimentally derived paramagnetic shift was then compared with the values obtained from quantum chemical (DFT) calculations. Furthermore, variable-temperature NMR studies were recorded for all complexes. It is demonstrated that NMR spectroscopy can be applied to evaluate the rate constants of fast fluxional processes within paramagnetic and catalytically active metal complexes.  相似文献   

9.
Reaction of in situ generated copper(II)-monosubstituted Keggin polyoxometalates and copper(II)-bipyridine-oxalate complexes in the corresponding alkaline acetate buffer led to the formation of hybrid metal organic-inorganic compounds K(2)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)].14H(2)O (1), K(14)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}](2)[SiW(11)O(39)Cu(H(2)O)].55H(2)O (2), (NH(4))(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (3), and Rb(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (4). Their structures have been established by single-crystal X-ray diffraction. The main structural feature of these compounds is the presence of copper(II)-monosubstituted alpha-Keggin polyoxoanions as inorganic building blocks, on which the mu-oxalatodicopper metalorganic blocks are supported. Compound 1contains the discrete hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)](2)(-), whereas the polymeric hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}(2)](n)(4)(n)(-) gives a monodimensional character to compounds 2-4. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on both the [Cu(2)(bpy)(2)(H(2)O)(4)(mu-ox)](2+) cationic complex and the metalorganic blocks have been performed in order to determine the optimized geometry and the magnetic coupling constants, respectively.  相似文献   

10.
Five manganese(II) complexes of formulas [Mn(2)(Etmal)(2)(H(2)O)(2)(L)](n) (1-4) and {[Mn(Etmal)(2)(H(2)O)][Mn(H(2)O)(4)]}(n) (5) with H(2)Etmal = ethylmalonic acid (1-5) and L = 1,2-bis(4-pyridyl)ethane (bpa) (1), 4,4'-azobispyridine (azpy) (2), 4,4'-bipyridyl (4,4'-bpy) (3), and 1,2-bis(4-pyridyl)ethylene (bpe) (4) were synthesized and structurally characterized by single crystal X-ray diffraction. Their thermal behavior and variable-temperature magnetic properties were also investigated. The structure of the compounds 1-4 consists of corrugated layers of aquamanganese(II) units with intralayer carboxylate-ethylmalonate bridges in the anti-syn (equatorial-equatorial) coordination mode which are linked through bis-monodentate bpa (1), azpy (2), 4,4'-bpy (3), and bpe (4) ligands to build up a three-dimensional (3D) framework. The structure of compound 5 is made up by zigzag chains of manganese(II) ions with a regular alternation of [Mn(H(2)O)(4)](2+) and chiral (either Δ or λ enantiomeric forms) [Mn(Etmal)(2)(H(2)O)](2-) units within each chain. In contrast to the bidentate/bis-monodentate coordination mode of the Etmal ligand in 1-4, it adopts the bidentate/monodentate coordination mode in 5 with the bridging carboxylate-ethylmalonate also exhibiting the anti-syn conformation but connecting one equatorial and an axial position from adjacent metal centers. The manganese-manganese separation through the carboxylate-ethylmalonate bridge in 1-5 vary in the range 5.3167(4)-5.5336(7) ?. These values are much shorter than those across the extended bis-monodentate N-donors in 1-4 with longest/shortest values of 11.682(3) (3)/13.9745(9) ? (4). Compounds 1-5 exhibit an overall antiferromagnetic behavior, where the exchange pathway is provided by the carboxylate-ethylmalonate bridge. Monte Carlo simulations based on the classical spin approach (1-5) were used to successfully reproduce the magnetic data of 1-5.  相似文献   

11.
Summary Four binuclear CuII complexes, [Cu2(L)(-X)], have been prepared and characterized, where H3L is a 2:1 Schiff base derived from 2-hydroxy-1-naphthaldehyde and 1,3-diamino-2-propanol and X = 1,3-N3 (1), C3H3N2 (pyrazolate) (2), AcO (3) and PhCO2 (4). The CuIIions are bridged by endogenous alkoxide and bidentate exogenous bridges. The variable-temperature magnetic analyses show that complexes (2)–(4) exhibit antiferro-magnetic coupling with the exchange integrals, 2J, from- 188 to -158 cm-1. The -1,3-azide-bridged binuclear CuII complex (1) shows the essential features of diamagnetism through measurements of its variable-temperature susceptibility and e.p.r. spectra. The results suggest that (1) can act as a diamagnetic model for metazidohemocyanin.  相似文献   

12.
13.
14.
A Schiff base ligand (HL), 2,4-dimethoxy-N-(5-chloro-2-hydroxybenzylidene)-benzenamine, derived from 5-chloro-2-hydroxybenzaldehyde and 2,4-dimethoxyaniline, and its metal complexes [Co(L)2]·CH3OH (1), [Ni(L)2] (2), [Cu(L)2] (3) have been synthesized. The compounds were characterized by analytical and spectroscopic methods. In addition, the structures of the Schiff base HL and its Co(II) complex were determined by single-crystal X-ray analysis. The Co(II) center is six-coordinate, being coordinated to two imine nitrogen, two phenolate oxygen and two methoxy oxygen atoms of two crystallographically independent Schiff base ligands. Luminescence properties of HL and its complexes were investigated both in solution and in the solid state.  相似文献   

15.
Aqua-bridged binuclear cobalt (II) benzoate complexes having pyridine as auxiliary ligands are synthesised through solid state reactions and characterised. The binuclear core in these complexes comprise of two bridging benzoates and an aqua bridge. Each of the cobalt (II) centre is further co-ordinated to one benzoate and two pyridine ligands. The aqua-bridged cobalt (II) benzoate complex [Co2(μ-H2O)(μ-OBz)2(OBz)2(Py)4] ·  (C6H6)(BzOH) (1a) is inclusion compounds with benzoic acid and benzene (where OBz  =  benzoate, py  =  pyridine). Analogous complex [Co2(μ-H2O)(μ-OBz)2(OBz)2(Py)4] · 1.5(C6H6) without benzoic acid included is also prepared by an alternative method and structurally characterised. Analogous aqua-bridged complex derived from p-chlorobenzoic acid in unsolvated form is characterised. The Co–O–Co separation in these complexes is in the range of 3.55–3.64 Å with angles Co–O–Co varying from 111.8° to 116.4°. While similar reaction in solution leads to the formation of mononuclear complex having composition [Co(OBz)2(Py)2(H2O)]. The unsubstituted benzoate complex 1a can be easily oxidised to form a tetrameric cobalt (III) complex having benzoate and oxo-bridged structure with a Co4O4 core.  相似文献   

16.
17.
Picolyl hydrazide ligands have two potentially bridging functional groups (micro-O, micro-N-N) and consequently can exist in different coordination conformers, both of which form spin-coupled polynuclear coordination complexes, with quite different magnetic properties. The complex [Cu(2)(POAP-H)Br(3)(H(2)O)] (1) involves a micro-N-N bridge (Cu-N-N-Cu 150.6 degrees ) and exhibits quite strong antiferromagnetic coupling (-2J = 246(1) cm(-)(1)). [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2) has two Cu(II) centers bridged by an alkoxide group with a very large Cu-O-Cu angle of 141.7 degrees but unexpectedly exhibits quite weak antiferromagnetic exchange (-2J = 91.5 cm(-)(1)). This is much weaker than anticipated, despite direct overlap of the copper magnetic orbitals. Density functional calculations have been carried out on compound 2, yielding a similar singlet-triplet splitting energy. Structural details are reported for [Cu(2)(POAP-H)Br(3)(H(2)O)] (1), [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2), [Cu(2)(PAOPF-2H)Br(2)(DMSO)(H(2)O)].H(2)O (3), [Cu(4)(POMP-H))(4)](NO(3))(4).2H(2)O (4), and PPOCCO (5) (a picolyl hydrazide ligand with a terminal oxime group) and its mononuclear complexes [Cu(PPOCCO-H)(NO(3))] (6) and [Cu(PPOCCO-H)Cl] (7). Compound 1 (C(12)H(13)Br(3)Cu(2)N(5)O(4)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 15.1465(3) A, b = 18.1848(12) A, c = 6.8557(5) A, beta = 92.751(4) degrees, and Z = 4. Compound 2 (C(10)H(13)Br(3)Cu(2)N(7)O(4)) crystallizes in the triclinic system, space group P, with a = 9.14130(1) A, b = 10.4723(1) A, c = 10.9411(1) A, alpha = 100.769(1), beta = 106.271(1) degrees, gamma = 103.447(1) degrees, and Z = 2. Compound 3 (C(23)H(22)Br(2)Cu(2)N(7)O(5.5)S) crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.406(2) A, b = 22.157(3) A, c = 10.704(2) A, beta = 106.21(1) degrees, and Z = 4. Compound 4(C(52)H(48)Cu(4)N(20)O(18)) crystallizes in the monoclinic system, space group P2(1)/n, with a = 14.4439(6) A, b = 12.8079(5) A, c = 16.4240(7) A, beta = 105.199(1) degrees, and Z = 4. Compound 5 (C(15)H(14)N(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.834(3) A, b = 11.797(4) A, c = 15.281(3) A, and Z = 4. Compound 6(C(15)H(13)CuN(5)O(5)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 8.2818(9) A, b = 17.886(2) A, c = 10.828(1) A, beta = 92.734(2) degrees, and Z = 4. Compound 7 (C(15)H(13)CuClN(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.9487(6) A, b = 14.3336(10) A, c = 13.0014(9) A, and Z = 4. Density functional calculations on PPOCCO are examined in relation to the anti-eclipsed conformational change that occurs on coordination to copper(II).  相似文献   

18.
Bicarbonate ion reacts with the dinuclear nickel(II) complex containing the taec ligand (taec = N,N',N' ',N' '-tetrakis(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane) in buffered aqueous solution to form the mu-eta(2),eta(2)-carbonate complex with a large effective binding constant for bicarbonate ion, log K(B) = 4.39 at pH = 7.4. In contrast, the dinuclear nickel(II) complex containing the o-xyl-DMC(2) ligand (o-xyl-DMC(2) = alpha,alpha'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene) does not react with bicarbonate or carbonate ion in aqueous solution. In propylene carbonate, the reaction of [Ni(2)(o-xyl-DMC(2))](4+) with bicarbonate proceeds rapidly to form the mu-eta(1),eta(1)-carbonate complex. The structure of this carbonate complex has been determined by an X-ray diffraction study that confirms the mu-eta(1),eta(1)-carbonate binding mode. A mononuclear analogue of [Ni(2)(taec)](4+), [Ni(2,3,2-tetraamine)](2+) does not form a detectable mononuclear or dinuclear product with bicarbonate ion in aqueous solution, but [NiDMC](2+) (DMC = 5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane) reacts slowly with carbonate ion in aqueous solution to form a 2:1 complex.  相似文献   

19.
The tetra- and binuclear heterometallic complexes of nickel(II)-vanadium(IV/V) combinations involving a phenol-based primary ligand, viz., N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine (H2L1), are reported in this work. Carboxylates and beta-diketonates have been used as ancillary ligands to obtain the tetranuclear complexes [Ni(II)(2)V(V)(2)(RCOO)(2)(L(1))(2)O(4)] (R = Ph, 1; R = Me(3)C, 2) and the binuclear types [(beta-diket)Ni(II)L(1)V(IV)O(beta-diket)] (3 and 4), respectively. X-ray crystallography shows that the tetranuclear complexes are constructed about an unprecedented heterometallic eight-membered Ni(2)V(2)O(4) core in which the (L(1))(2)- ligands are bound to the Ni center in a N(2)O(2) mode and simultaneously bridge a V atom via the phenoxide O atoms. The cis-N(2)O(4) coordination geometry for Ni is completed by an O atom derived from the bridging carboxylate ligand and an oxo O atom. The latter two atoms, along with a terminal oxide group, complete the O5 square-pyramidal coordination geometry for V. Each of the dinuclear compounds, [(acac)Ni(II)L(1)V(IV)O(acac)] (3) and [(dbm)Ni(II)L(1)V(IV)O(dbm)] (4) [Hdbm = dibenzoylmethane], also features a tetradentate (L(1))(2)- ligand, Ni in an octahedral cis-N(2)O(4) coordination geometry, and V in an O(5) square-pyramidal geometry. In 3 and 4, the bridges between the Ni and V atoms are provided by the (L(1))(2)- ligand. The Ni...V separations in the structures lie in the narrow range of 2.9222(4) A (3) to 2.9637(5) A (4). The paramagnetic Ni centers (S = 1) in 1 and 2 are widely separated (Ni...Ni separations are 5.423 and 5.403 A) by the double V(V)O(4) bridge that leads to weak antiferromagnetic interactions (J = -3.6 and -3.9 cm-1) and thus an ST = 0 ground state for these systems. In 3 and 4, the interactions between paramagnetic centers (Ni(II) and V(IV)) are also antiferromagnetic (J = -8.9 and -10.0 cm-1), leading to an S(T) = 1/2 ground state. Compound 4 undergoes two one-electron redox processes at E(1/2) = +0.66 and -1.34 V vs Ag/AgCl reference due to a V(IV/V) oxidation and a Ni(II)/I reduction, respectively, as indicated by cyclic and differential pulse voltammetry.  相似文献   

20.
Transition Metal Chemistry - Dinuclear copper(II) complex [Cu2(L)2(μ2-1,1-N3)2(N3)2] (1) with double μ1,1-azido bridges and polynuclear nickel(II) complex...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号