首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monensin A and B were studied by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) and the fragment ions were confirmed by accurate-mass measurements. Analyses were performed on both a quadrupole time-of-flight (QTOF) and a Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. The analysis revealed that fragment ions were produced by Grob-Wharton fragmentations and pericyclic rearrangements in addition to various simple neutral losses. A study of the protonated and sodiated sodium salt revealed different fragmentation pathways for these species, thus complementary structural information could be gained. A complete fragmentation pathway of monensin A and B protonated sodium salt [(M-H+Na)+H])+) and sodiated sodium salt [(M-H+Na)+Na](+) is proposed. MS(3) analysis confirmed the separate fragmentation pathways.  相似文献   

2.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

3.
Lopes NP  Gates PJ  Wilkins JP  Staunton J 《The Analyst》2002,127(9):1224-1227
Lasalocid acid is an important polyether ionophore veterinary drug. Polyether ionophores have been the subject of MS study for many years, but this is the first rigorous study of the complex fragmentation processes occurring in ESI MS/MS for lasalocid, underpinned by high-resolution accurate-mass measurement. Initial low-resolution analyses were performed on an ion-trap instrument. High-resolution analyses were performed on a Fourier-transform ion cyclotron resonance mass spectrometer. The MS/MS analysis of the pseudo-molecular ion shows that fragment ions are produced either by beta-elimination or by neutral losses of water. Additional ions were observed in the source dissociation analysis, indicating that additional fragmentation reactions occur in the source region. Some of these ions can then undergo additional ion-ion or ion-molecule reactions before being extracted from the source. The study of both the protonated and sodiated sodium salts shows the same fragmentation pathways, with fragment ions containing two sodiums at low intensity. A fragmentation pathway of the lasalocid acid protonated sodium salt [(M-H+Na)+H]+ (m/z 613) and sodiated sodium salt [(M-H+Na)+Na]+ (m/z 635) is presented. The increased understanding afforded by this study will help in the development of unequivocal analytical methods for lasalocid and related polyether ionophore veterinary drugs.  相似文献   

4.
The gas phase fragmentation reactions of protonated cysteine and cysteine-containing peptides have been studied using a combination of collisional activation in a tandem mass spectrometer and ab initio calculations [at the MP2(FC)/6-31G*//HF/6-31G* level of theory]. There are two major competing dissociation pathways for protonated cysteine involving: (i) loss of ammonia, and (ii) loss of the elements of [CH2O2]. MS/MS, MS/MS of selected ions formed by collisional activation in the electrospray ionization source as well as ab initio calculations have been carried out to determine the mechanisms of these reactions. The ab initio results reveal that the most stable [M + H − NH3]+ isomer is an episulfonium ion (A), whereas the most stable [M + H − CH2O2]+ isomer is an immonium ion (B). The effect of the position of the cysteine residue on the fragmentation reactions of the [M + H]+ ions of all the possible simple dipeptide and tripeptide methyl esters containing one cysteine (where all other residues are glycine) has also been investigated. When cysteine is at the N-terminal position, NH3 loss is observed, although the relative abundance of the resultant [M + H − NH3]+ ion decreases with increasing peptide size. In contrast, when cysteine is at any other position, water loss is observed. The proposed mechanism for loss of H2O is in competition with those channels leading to the formation of structurally relevant sequence ions.  相似文献   

5.
A novel LC/MS/MS method that uses multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of enhanced product ions (EPI) on a hybrid quadrupole-linear ion trap mass spectrometer (Q TRAP) was developed for drug metabolite identification. In the MIM experiment, multiple predicted metabolite ions were monitored in both Q1 and Q3. The collision energy in Q2 was set to a low value to minimize fragmentation. Results from analyzing ritonavir metabolites in rat hepatocytes demonstrate that MIM-EPI was capable of targeting a larger number of metabolites regardless of their fragmentation and retained sensitivity and duty cycle similar to multiple reaction monitoring (MRM)-EPI. MIM-based scanning methods were shown to be particularly useful in several applications. First, MIM-EPI enabled the sensitive detection and MS/MS acquisition of up to 100 predicted metabolites. Second, MIM-MRM-EPI was better than MRM-EPI in the analysis of metabolites that undergo either predictable or unpredictable fragmentation pathways. Finally, a combination of MIM-EPI and full-scan MS (EMS), as an alternative to EMS-EPI, was well suited for routine in vitro metabolite profiling. Overall, MIM-EPI significantly enhanced the metabolite identification capability of the hybrid triple quadrupole-linear ion trap LC/MS.  相似文献   

6.
Active phloroglucinol constituents of Hypericum perforatum (St. John's wort) extracts, hyperforin and adhyperforin, have been studied following ion activation using tandem mass spectrometry (MS/MS) and complemented by accurate mass measurements. These two compounds were readily analyzed as protonated and deprotonated molecules with electrospray ionization. MS/MS and MS3 data from a quadrupole-linear ion trap tandem mass spectrometer were employed to elucidate fragmentation pathways. Fourier transform ion cyclotron resonance measurements afforded excellent mass accuracies for the confirmation of elemental formulae of product ions formed via infrared multiphoton dissociation and sustained off-resonance irradiation collision-induced dissociation. Fragmentation schemes have been devised for the dissociation of hyperforin and adhyperforin in negative and positive ion modes. This information is expected to be especially valuable for the characterization of related compounds, such as degradation products, metabolites and novel synthetic analogs of hyperforin.  相似文献   

7.
The fragmentation behavior of (+)-silybin (1) and (+)-deuterosilybin (2), as well as of their flavanone-3-ol-type building blocks, such as 3,5,7-trihydroxy-2-phenyl-4-chromanone (3) and 2-(1,4-benzodioxolanyl)-3,5,7-trihydroxy-4-chromanone (4), were investigated by atmospheric pressure chemical ionization quadropole time-of-flight tandem mass spectrometry in the positive ion mode (APCI(+)-QqTOF MS/MS). The product ion spectra of the protonated molecules of 1 revealed a rather complicated fragmentation pattern with product ions originating from consecutive and competitive loss of small molecules such as H2O, CO, CH2O, CH3OH and 2-methoxyphenol, along with the A+- and B+-type ions arising from the cleavage of the C-ring of the flavanone-3-ol moiety. The elucidation of the fragmentation behavior of 1 was facilitated by acquiring information on the fragmentation characteristics of the flavanone-3-ol moieties and 2. The capability of the accurate mass measurement on the quadrupole time-of-flight mass spectrometer allowed us to determine the elemental composition of each major product ion. Second-generation product ion spectra obtained by combination of in-source collision induced dissociation (CID) with selective CID (pseudo-MS(3)) was also helpful in elaborating the fragmentation pathways and mechanism. Based on the experimental results, a fragmentation mechanism as well as fragmentation pathways for 1 and its flavanone-3-ol building blocks (3, 4) are proposed and discussed.  相似文献   

8.
The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been investigated. Various scanning modes have been employed using the triple-quadrupole instrument to elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID) spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.  相似文献   

9.
The metabolism of limonin 17-beta-D-glucopyranoside (LG) by non-cancerous (RWPE-1) and cancerous (PC-3) human prostate epithelial cells was investigated using high-performance liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) with in-source fragmentation and tandem mass spectrometry (MS/MS). During positive ion LC/ESI-MS, LG formed an abundant sodiated species ([M+Na]+) while the protonated molecule was barely observable. [M+Na]+ further fragmented into the less abundant [LARL+H]+ and a predominantly protonated aglycone molecule (limonin) due to in-source fragmentation. The major metabolite, limonin A-ring lactone (LARL), formed an abundant protonated molecule that was fragmented into a protonated molecule of limonin by loss of one molecule of water. In MS/MS by collisionally activated dissociation (CAD), LG produced the sodiated aglycone, [aglycone+Na]+, while LARL fragmented into [M+H]+ of limonin and fragment ions resulted by further loss of water, carbon monoxide and carbon dioxide, indicating the presence of oxygenated-ring structures. The limits of detection of LG were 0.4 and 20 fmol in selected-ion monitoring (SIM) and selected-reaction monitoring (SRM) detection, respectively.  相似文献   

10.
2,3‐Dimethyl‐2,3‐dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour‐phase detection systems. In this study, the formation and detection of gas‐phase [M+H]+, [M+Li]+, [M+NH4]+ and [M+Na]+ adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The [M+H]+ ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50°C. In contrast, the [M+Na]+ ion demonstrated increasing ion abundance at source temperatures up to 105°C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision‐induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source‐formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the [M+Na]+ adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright © 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

11.
Isopropylthioxanthone (ITX), usually applied as a mixture of 2- and 4-isomers, is a common photo-initiator in UV inks used in paper- or plastic-based packaging materials. In this work a pentafluorophenylpropyl column (HS F5) has been used to achieve the chromatographic separation of the two isomers. A gradient elution with acetonitrile and a 25mM formic acid-ammonium formate at pH 3.75 are required to provide an Rs of 1.3 between the two compounds. The fragmentation pattern of ITX was studied using two mass analyzers, an ion trap (IT) (multi-stage fragmentation) and a triple quadrupole mass analyzer of hyperbolic rods (accurate mass (AM) measurement). The protonated molecule [M+H](+) observed in the mass spectrometry (MS) spectrum lost an isopropyl group, [M+H-C(3)H(6)](+). Later, this ion fragmented, yielding the radical ion [M+H-C(3)H(6)-CHO](+). The elemental composition of these product ions was confirmed by AM measurement. Electrospray ionization (ESI) was used as an ionization source to couple liquid chromatography (LC) to MS. Instrumental quality parameters of three acquisition modes provided by the triple quadrupole mass analyzer were studied and good run-to-run precision (relative standard deviation, RSD, lower than 10%) and limits of detection (LODs) down to 0.8pg injected in the LC-MS/MS system were obtained. Finally the LC-MS/MS method using H-SRM Q1 acquisition mode was used to analyze 2- and 4-ITX in a range of food samples. The use of highly selective selected reaction monitoring (H-SRM on Q1) resulted in improved selectivity without sensitivity loss.  相似文献   

12.
Fragmentations of three triphenylethylene compounds (toremifene and its two metabolites) with different functional side-chain groups (alcohol, acid and amine) were studied. The compounds were dissociated by collision-induced dissociation (CID) in the interface region of an electrospray ionization source (ESI(+)) and in the collision cell of a triple quadrupole mass spectrometer. Fragmentation pathways for these molecules are proposed, based on accurate mass measurements of in-source fragment ions and MS/MS experiments using product and precursor ion scanning. The side-chain functional groups were found to strongly affect the fragmentations of the molecular ions. The fragmentation pathways of the protonated molecule and sodium ion adduct were quite similar, but the subsequent stabilities of certain common fragments were surprisingly different.  相似文献   

13.
Glycopeptides derived from ribonuclease B and ovomucoid have been subjected to collision-induced dissociation (CID) in the second quadrupole of a triple quadrupole mass spectrometer. Doubly charged parent ions gave predictable fragmentation that yielded partial sequence information of the attached oligosaccharide as Hex and HexNAc units. Common oxonium ions are observed in the product ion mass spectra of the glycopeptides that correspond to HexNAc+ (m/z 204) and HexHexNAc+ (m/z 366). A strategy for locating the glycopeptides in the proteolytic digest mixtures of glycoproteins by ions spray liquid chromatography mass spectrometry (LC/MS) is described by utilizing CID in the declustering region of the atmospheric pressure ionization mass spectrometer to produce these characteristic oxonium ions. This LC/CID/MS approach is used to identify glycopeptides in proteolytic digest mixtures of ovomucoid, asialofetuin, and fetuin. LC/CID/MS in the selected ion monitoring mode may be used to identify putative glycopeptides from the proteolytic digest of fetuin.  相似文献   

14.
Fragmentation mechanisms of protonated chalcone and its derivatives with different functional groups were investigated by atmospheric pressure chemical ionization with tandem mass spectrometry (MS/MS). The major fragmentation pathways were loss of the phenyl group from the A or B ring, combined with loss of CO. Losses of H(2)O and CO from the precursor ions of [M+H](+) are proposed to occur via rearrangements. Elimination of water from protonated chalcones was observed in all the title compounds to yield a stable ion but it was difficult to obtain skeletal fragmentation of a precursor ion. Loss of CO was found in the MS/MS spectra of all the compounds except the nitro-substituted chalcones. When the [M+H--CO](+) ion was fragmented in the MS/MS experiments, there were distinctive losses of 15 and 28 Da, as the methyl radical and ethylene, respectively. The ion at m/z 130, found only in the nitro-substituted chalcones, was assigned as C(9)H(6)O by Fourier transform ion cyclotron resonance (FTICR)-MS/MS; m/z 130 is a common fragment ion in the electron ionization (EI) spectra of chalcones. In order to more easily distinguish the constitutional isomers of these chalcones, breakdown curves were produced and these provided strong support in this study.  相似文献   

15.
李馨  王英武  顾景凯  钟大放  王玲  陈刚 《分析化学》2003,31(9):1105-1108
采用电喷雾/四极杆飞行时间质谱(ESI-QqTOF)联用技术,对3种三唑仑苯二氮(艹卓)类药物进行CID研究,并以质子化准分子离子[M+H]+作为内标物,对碎片离子进行了准确质量测定,确认了这些碎片离子的元素组成,探讨了该类化合物的质谱裂解规律.研究发现,它们的ESI-MS2(源内)和ESI-MS3质谱分别生成脱去N2分子、HCN或CH3CN分子和Cl原子的碎片离子,其中m/z 205为3种药物共有的碎片离子,这些特征可用于三唑仑苯二氮(艹卓)类药物的体内代谢转化和定量研究.  相似文献   

16.
Analysis of crude methanolic extracts of fresh khat (Catha edulis) by liquid chromatography/mass spectrometry (LC/MS) revealed the presence of 62 cathedulin alkaloids (compared with 15 published structures). Many cathedulins generated doubly protonated molecules following electrospray ionisation and the ratio of doubly to singly protonated species could be manipulated by adjusting the electrospray capillary position and source conditions. By selecting the doubly protonated species for serial mass spectrometric analysis (MS/MS), it was possible to use an ion trap mass spectrometer to observe singly charged product ions at lower m/z values than ion trap MS/MS analysis of [M+H](+) would have allowed. These spectra were particularly valuable in elucidating the acylation patterns of cathedulins where MS/MS analysis of [M+H](+) resulted in loss of a large neutral species to yield a small singly charged fragment below the lower limit for ion trapping. Acylation patterns for most of the 62 cathedulins are proposed from mass spectrometric analysis, and the data obtained for a major unreported cathedulin of mass 1001 Da suggest that it belongs to a new group of cathedulins having a cathate dilactone bridge but not an evoninate bridge.  相似文献   

17.
We report the feasibility of multistage fragmentation in combination with a fast background subtraction method, yielding the equivalent of MS3. The first quadrupole selects an ion of interest, and the ion is axially accelerated into Q2 to generate fragment ions. Subsequent stages of mass selection and fragmentation are obtained by quadrupolar resonant excitation within the Q2 collision cell. The fragments are analyzed downstream by either a resolving quadrupole or a time-of-flight (TOF) mass spectrometer, and multistage spectra are obtained by subtraction (MS(n) - MS(n-1)) for n = 3 or 4. We discuss the characterization of this method, including product ion arrival times, fragmentation efficiencies, and ion selectivity. We report accurate TOF mass spectra of background-subtracted MS3 for protonated molecules reserpine (m/z 609), bosentan (m/z 1552), and taxol (m/z 854).  相似文献   

18.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

19.
The antimicrobial moenomycin, commonly used as a growth promoter in livestock, was isolated from medicated chicken feed. The purified extract was subjected to reversed-phase liquid chromatographic separation followed by structural characterization using ion-trap mass spectrometry (ITMS), which allowed identification of five moenomycins (A, A12, C1, C3, and C4) as the major components. The fragmentation patterns of the protonated and deprotonated moenomycin molecules, as well as of a series of sodium adducts, were investigated using ITMS after electrospray ionization. While the protonated molecules [M+H]+ proved highly unstable and underwent extensive in-source fragmentation, isolation and activation of the [M--H]- ions (m/z 1580 for moenomycin-A) yielded simple mass spectra with a dominant base peak corresponding to the loss of the carboxy-glycol and the C25-hydrocarbon chain (m/z 1152 for moenomycin-A). Further study of this fragment ion in an MS3 experiment gave rise to a peculiar product ion (m/z 902 for moenomycin-A) that was attributed to the expulsion of a carbohydrate moiety representing a central building block of the linear molecule. In positive ion mode the generation of the mono-sodiated adduct ions, [M+Na]+, was promoted by amending the mobile phase with 100 microM sodium acetate, but this also resulted in higher adducts of the type [M+2Na--H]+ and [M+3Na--2H]+ arising from the formation of the sodium salts of the phosphate acid diester and subsequently of the carboxylic acid. Substantial differences among the fragment-rich product ion profiles of the three species were observed, and could in part be traced back to the mode of complexation of the additional sodium cation(s).  相似文献   

20.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号